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Preface

Moore’s law continues unabated and new design challenges lead to new design
methodologies and even paradigm shifts. One such recent development is the
introduction of three-dimensional integration technology. Efficiently utilizing
novel technologies poses new design challenges and therefore require new design
methodologies and EDA tools. Training engineers in these methodologies and
design techniques is essentially done at the graduate level and once these tech-
nologies become the established paradigm, at the undergraduate level.

Network-on-Chip technology has been a popular research topic for a while
now, and is the current design paradigm for multi- and many-core architectures. It
is also a natural complement for 3D integration technology. Its multifaceted and
multidisciplinary nature imposes a number of challenges both in the industrial and
academic environments. While at the graduate level it is common or even pref-
erable to use papers, case studies and assignments as the main teaching tools, at the
undergraduate level a suitable textbook is indispensable. Since there is an
increased need to include an introduction to Networks-on-Chip in undergraduate
curricula, such a textbook is required, and has been missing from the literature for
too long. At the same time, the large body of research work in the field must be
also made available in an organized way for graduate students, researchers, and
professionals to use as reference.

Therefore, the purpose of this book is two-fold. First, to be used as an under-
graduate or graduate level textbook for introduction to Network-on-Chip tech-
nology providing students and practising engineers with the fundamentals as well
as details in the many facets of Network-on-Chip design, including recent work on
3D NoCs. Second, to be used as reference for researchers in the field.

For this purpose, each of the first seven chapters in the first part of the book
begins with the introduction of the fundamental concepts assuming only little prior
knowledge of the reader in the field of digital design, computer architecture, and
VLSI design. Instead, relative information is often summarized here in order to
make each chapter as self-contained as possible. At the same time, after the
introduction to the fundamentals, following advances in the area are summarized
in a survey manner with appropriate references, so that the student can immedi-
ately build upon the fundamentals while the practising researcher can easily find
relative information. Furthermore, each chapter contains a number of questions,
problems, and design assignments that can be used in the class or the laboratory.

v
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These first seven chapters can be used as an introductory course in NoC design
either at the undergraduate or graduate level.

The next four chapters in the first part of the book contain case studies from the
academia and industry, which can be used as a second (graduate-level) course in
NoC design.

The second part of the book contains proposed design projects covering all
aspects of NoC design, starting with design space exploration and high-level
simulation, down to the VLSI design of NoC components.

The authors would like to thank all the people who helped to make this book
possible, by contributing, providing reviews, and experimental results.

Nicosia, June 2013 Konstantinos Tatas
Athens Kostas Siozios
Athens Dimitrios Soudris
Stockholm Axel Jantsch
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Chapter 1
Network-on-Chip Technology: A Paradigm Shift

Abstract The first chapter introduces the fundamental Network-on-Chip (NoC)
concepts starting with the motivation that caused the paradigm shift from bus-based
to NoC-based architectures. Similarities and differences between NoCs and computer
networks are discussed. Furthermore, the components of a NoC-based System-on-
Chip (SoC) are introduced and the NoC functionality is outlined in terms of the OSI
layer structure. A significant part of this chapter is spent explaining both the benefits
and challenges of adopting NoC as the SoC communication infrastructure. Finally,
current research topics in the area are classified.

1.1 Introduction

The driving force behind Integrated Circuit (IC) technology has been Moore’s law
for almost five decades [1]. Although this is projected to slow down to a doubling
every 3 years in the next few years for fixed chip sizes [2], the exponential trend
is still in force. Though the evolution is continuous, the system level focus, or sys-
tem scope, moves in steps. When a technology matures for a given implementa-
tion style, it leads to a paradigm shift. Past examples of such shifts were moving
from room- to rack-level systems (LSI-1970s) and later from rack- to board-level
systems (VLSI-1980s). This trend allowed in the 1990’s the introduction of Systems-
on-Chip (SoC), the integration of many components such as microprocessors, cus-
tom IP, and even analog in a single die. One of the implications of Moore’s law is
the increase in IC operating frequency. However, in the past few years integrated cir-
cuits have not been keeping up with the operating frequencies predicted by Moore’s
law mainly due to power consumption and thermal density constraints, as shown
in Fig. 1.1. Since, however, transistor density has continued to increase unencum-
bered, designers worked around this problem by introducing multicore and many-
core architectures [3], increasing performance without a proportional increase in
operating frequency. This trend continues today with the introduction of heteroge-
neous many-core architectures [4].

K. Tatas et al., Designing 2D and 3D Network-on-Chip Architectures, 3
DOI: 10.1007/978-1-4614-4274-5_1, © Springer Science+Business Media New York 2014
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Fig. 1.1 Processor actual operating frequencies (Data from Stanford CPU-DB [5]) vs predicted
operating frequencies (from ITRS roadmap [2])

Historically, computation has been expensive and communication cheap. How-
ever, with scaling microchip technologies, this changed. More specifically, last years
computation is becoming ever cheaper, while communication encounters funda-
mental physical limitations such as time-of-flight of electrical signals, power use
in driving long wires/cables, etc. In comparison with off-chip, on-chip communi-
cation is significantly cheaper. There is room for lots of wires on a chip. Thus, the
shift to single-chip systems has relaxed system communication problems. However
on-chip wires do not scale in the same manner as transistors do, and, as we shall see
in the following, the cost gap between computation and communication is widening,
as it is depicted in Fig. 1.2. Meanwhile the differences between on- and off-chip wires
make the direct scaling down of traditional multi-computer networks suboptimal for
on-chip use.

In addition to that, silicon technologies face other challenges. Synchronization
of future chips with a single clock source and negligible skew will be extremely
difficult, if not impossible. The most likely synchronization paradigm for future
chips, globally asynchronous and locally synchronous, involves using many different
clocks. In the absence of a single timing reference, SoC chips become distributed
systems on a single silicon substrate. Global control of the information traffic is
unlikely to succeed because the system needs to keep track of each component’s
states. Thus, components will initiate data transfers autonomously, according to their
needs. The global communication pattern will be fully distributed, with little or no
global coordination.

As SoC complexity scales, capturing the system’s functionality with fully deter-
ministic operation models will become increasingly difficult. As global wires span
multiple clock domains, synchronization failures in communicating between differ-
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Fig. 1.2 Projected relative delay for local and global wires and for logic gates in technologies of
the near future [2]

ent domains will be rare but unavoidable events [6]. Moreover, energy and device
reliability concerns will impose low levels of logic swing and power supply voltage,
most likely less than one volt [2]. Electrical noise due to crosstalk, electromag-
netic interference, and radiation-induced charge injection will likely produce data
errors, also called upsets. Thus, transmitting digital values on wires will be inherently
unreliable and non-deterministic. Other causes of non-determinism include design
components with a high level of abstraction and coarse granularity and distributed
communication control.

The integration of many processing and memory cores in a single chip introduced
in turn a communication overhead that traditional bus-based architectures cannot
handle for a number of reasons [7]. More specifically, the interconnection infrastruc-
ture has a significant impact on SoC costs because among others it influences four key
factors of SoC design: die size, power consumption, design time, and performance.

• Die size can increase if conventional interconnect routing wire and gate area
requirements explode due to the increasing number of IP blocks in a SoC.

• Power consumption can mushroom if an SoC’s interconnect cannot easily be con-
figured for advanced power management schemes like dynamic frequency and
voltage scaling (DVFS).

• Project design time can extend if the SoC’s interconnect becomes difficult to
configure and verify. This can slow downstream designs if a platform-based design
methodology is used as a basis for derivative SoC designs.
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Fig. 1.3 Qualitative comparison between NoC and bus interconnections [8]

• Performance can suffer if an interconnect approach cannot adapt to changing
requirements over the SoC’s design cycle and product life for changing SoC IP
blocks, quality of service (QoS), bandwidth, latency, security, and clock frequency.

Whereas the shared bus is a simple interface, since it is built on well-understood
concepts and it is easy to model, however, it introduces a mentionable drawback espe-
cially in a highly interconnected (multicore) system. This mainly occurs because the
buses do not scale well for a large number of components, while the long global
wires and the system behavior becomes unpredictable from the component’s point
of view. More specifically, as the number of cores integrated to a system increases, the
power usage per communication event grows as well due to more attached units lead-
ing to higher capacitive load. Apart from power dissipation, the arbitration problem
especially for multi-master busses is also crucial. A qualitative comparison between
Network-on-Chip (NoC) and bus-based approaches can be found in Fig. 1.3.

Based on this analysis, we can conclude that NoCs overcome some of the limita-
tions found in buses; however even this interconnection paradigm cannot be thought
of as ultimately scalable and, as such, it is an intermediate solution. Specifically,
the dedicated point-to-point links are optimal in terms of bandwidth availability,
latency, and power usage, since they usually are designed with a full-custom approach
(application-specific interconnection solution). Also, it is much simpler to model,
design, and verify the proper functionality of point-to-point links, as compared to
the corresponding network. On the other hand, as the number of cores increases,
there is an exponential increase to the number of links. Thus an area and possibly a
routing problem arises.

From the point of view of design-effort, we can claim that in small size systems
(consisting of a few cores), it might be efficient to provide the desired communication
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through an ad hoc communication structure. But, as the system size grows and the
design cycle time requirements decrease, there is an increasing demand for proposing
more generalized solutions. For maximum flexibility and scalability, it is generally
accepted that a move toward a shared, segmented global communication structure
is needed. The segmented long wires in this approach avoid signal degradation,
and busses are implemented as multiplexed structures in order to reduce power and
increase responsiveness. This notion translates into a data-routing network consist-
ing of communication links and routing nodes that are implemented on the chip.
In contrast to traditional SoC communication methods outlined previously, such a
distributed communication media scales well with chip size and complexity. Addi-
tional advantages include increased aggregated performance by exploiting parallel
operation. Furthermore, the recent introduction of 3-D integration technologies [9]
literally added a new dimension to the bus-based core interconnection problem.

A solution that proved popular was adopting a well-established paradigm, that of
computer networks. Thus, Networks-on-Chip (NoC) were introduced. NoC technol-
ogy is often called “a front-end solution to a back-end problem”. As semiconductor
transistor dimensions shrink and increasing amounts of IP block functions are added
to a chip, the physical infrastructure that carries data on the chip and guarantees QoS
begins to crumble. Many of today’s SoC are too complex to utilize a traditional hier-
archal bus or crossbar interconnect approach. Yesterday’s village traffic has turned
into today’s congested freeways.

1.2 Network-on-Chip

NoC technology is a relatively new approach to signaling that enables not only more
efficient interconnects but also more efficient design and verification processes for
modern SoCs. NoC is an approach to signaling that matches the needs of the signal
to various communications protocols in a way that reduces the complexity of the
chip’s interconnect. Slow or low bandwidth signals can be multiplexed onto a single
line with other signals, while only the highest speed, highest bandwidth signals
communicate directly over space-consuming parallel paths.

A typical NoC-based MPSoC is shown in Fig. 1.4. It is composed of a number of
components, called nodes, including Processing Elements (PEs), such as CPUs, cus-
tom IPs, DSPs, etc., and storage elements (embedded memory blocks). The PEs are
attached to network adapters through the Network Interfaces (NIs), while their func-
tionality is to decouple computation (the cores) from communication (the network).

The communication through the NoC is performed by enabling PEs to send and
receive packets through the network fabric composed of switches/routers connected
together through physical links, or channels. Typically, each link is a pair of opposite,
unidirectional, point-to-point buses, possibly including appropriate repeaters. Since
the desired properties for NoC usually is application-oriented, there are different
approaches for designing these links (e.g., they might consist of one or more logical
or physical channels). Often a switch together with its host PE, or memory, is referred
to as a tile.
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Fig. 1.4 NoC-based MPSoC

A critical parameter at NoCs affects the decision about how the packets have to
cross the network. Since NoC is a distributed network, these decisions are taken
according to the employed routing strategy usually at each router. Since this para-
meter highly affects the performance of NoC-based platform, up to now different
routing algorithms have been proposed in relevant literature [10].

For many designers the use of a NoC results in more flexibility to optimize their
SoCs. Prior to using a NoC approach these designers only had time to change their
interconnect about 5–6× per project. Today these same designers are able to refine
their interconnect 9–10× per project. This gives them greater flexibility to accom-
modate changes coming from both engineering and customers while also providing
more time for system-level power and performance optimization [11].

The NoC paradigm, of course, was not established overnight. Initially, it was not
obvious that NoC was the best candidate architecture for alleviating the productivity
gap problem. Jantch and Tenhunen [12] introduced two properties required of a
design process in order to become a true paradigm shift:

1. Arbitrary Composability: A system composed of components and combinators
that allow the components to be connected and integrated into larger component
assemblages is arbitrarily composable if a given component assemblage A can
be extended with any component by using the existing combinators without
changing the relative behavior of A.

2. Linear Effort: A design process that builds a system from the set of components
and combinators features this property if the design effort of integrating a given
set of n assemblages by means of the combinators is dependent on n but not
the size of the assemblages.
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Even though the above properties are meant as heuristics and not rigid mathematical
properties, they are important criteria that should be met by a design process in
order to be considered as a new paradigm. Consequently, the design of NoCs have
to be appropriately performed in order to fulfill them, if not guarantee them in all
cases. Some of the features that allow NoC-based platforms to adhere to the above
fundamental properties are summarized as follows:

• Allows design reuse;
• separates communication from computation;
• avoids global, centralized controller for communication;
• allows arbitrary number of terminals;
• allows the addition of links as the system size grows (scalability);
• does not utilize long, global wires spanning the whole chip;
• facilitates customization (e.g., link width, buffer sizes, topology, etc.);
• allows multiple voltage and frequency domains;
• delivers data in order either naturally or via layered protocol;
• offers varying guarantees for transfers;
• offers support for system testing;
• adapts easily to 3-D integration platforms.

Next, we describe in more detail some of the most important challenges for NoC
architectures [13]. Of course, we have to mention that whenever an architect has to
design a new NoC architecture, these features have to be appropriately tuned in order
to better address the product’s specifications.

1.3 OSI Layer Roles in a NoC

NoCs are packet-switched communication networks derived from the parallel com-
puting domain. By exploiting the lessons learned by the telecommunications com-
munity, the global on-chip communication is decomposed into layers similar to the
ISO/OSI Reference Model seen in the network on computers (see Fig. 1.5).

The ISO/OSI model does not define exactly how a system should be build, but acts
as a conceptual guideline. More specifically, by allowing each layer to hide its own
complexity from the layers above and only communicates with adjacent layers, it is
possible to enable different services, providing to the programmer an abstraction of
the communication framework [14]. A series of these layers is known as a “protocol
stack” and can be designed in hardware or software.

In the OSI model, network functionality is divided into seven different layers,
whereas the goals of this classification can be summarized as follows:

• The layers should exchange a minimum of information through the interfaces;
• there should be sufficiently many layers so that unrelated functions are not put in

the same layer;
• each layer should have boundaries with its upper and lower layer only.
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intermediate 
node

source core destination core

network adapter network adapter

source node source node

Application & Presentation 
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Network
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Link & Data
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packet/streams

flits/phits

physical link physical link

Fig. 1.5 ISO/OSI reference model for NoCs

1.3.1 Application Layer

This layer is where the resources are located. Notice that a resource may be per-
forming many different tasks (e.g., a microprocessor can execute several processes
simultaneously).

1.3.2 Presentation Layer

As resources may have different representations for numbers, there must be some
conversion between them. This layer performs the conversion among the different
representations used from hardware resources. For instance, typical examples are
representations with different resolution (i.e., integers in big-endian and little-endian
format). Another example could be if a microprocessor uses a signal processor to
speed up calculations. In such a case, if the microprocessor uses a floating point rep-
resentation, whereas the signal processor uses a fixed point format, then conversion
between these formats is absolutely necessary. Such a conversion is actually realized
inside the presentation layer.

1.3.3 Session Layer

Using the transport layer, the session layer will be responsible for establishing con-
nections between resources. Two different protocols are used for this scope: (i) a
connection-oriented protocol, which is more energy efficient under heavy traffic
due to retransmissions, and (ii) a connectionless protocol, where additional work at
receiver is necessary in order to support out-of-order delivery of data.
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1.3.4 Transport Layer

This layer incorporates all the necessary mechanisms for checking and verifying that
no packages are lost in the lower layers. The transport layer deals with the message
segmentation into packages, as well as their reassembling. Another critical task that
is handled inside the transport layer affects the flow control, which highly affects the
performance of the underlying NoC. More specifically, network congestion increases
cost per transmitted bit due to contention resolution overhead, whereas the amount
of data that enters the network, can be regulated, at the price of throughput.

1.3.5 Network Layer

The network layer handles issues related to the topology and the consequent routing
scheme. More specifically, both hierarchical and heterogeneous architectures can
be supported from this layer in order to better address the communication require-
ments of modern platforms. For instance, an optimum solution usually involves the
clustering of nodes with high-bandwidth requirements and their connection through
dedicated short length channels. This selection leads to mentionable energy and
performance gains, instead of using the rest of the network, since the intracluster
communication is by far more efficient compared to the corresponding intercluster
links. In addition to this, the network layer is also responsible for employed routing
algorithm. The two most widely accepted techniques for NoCs are the circuit and
packet switching. The advantages and disadvantages of employing these algorithms
are summarized as follows:

• Circuit switching:

– network control overhead incurs only once;
– best in case of persistent communication.

• Packet switching:

– distributed network control overhead;
– more energy-efficient for irregular communication.

1.3.6 Data Link Layer

The data link layer ensures a reliable transfer despite the physical unreliability. For
this purpose, it deals with the tasks of detecting and correcting errors occurred at the
physical layer. In addition to that, this layer is also responsible for medium access
control for sharing a common channel resource, with contention-based access. A
typical approach for correcting an error is through the retransmission of data in case
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of error. However, this approach can be costly in terms of energy and performance
degradation. Of course, the optimal choice for this parameter is derived after taking
into consideration also the constraints posed by the target system, as well as the
characteristics of physical channels.

1.3.7 Physical Layer

The physical layer refers to all that concerns the electrical characteristics of wires,
the circuits, and techniques to drive information (drivers, repeaters, layout, etc).
Different techniques can be employed during the design of physical layer targeting
to optimize the performance and reduce power/energy dissipation. Among others
are the usage of low-swing signaling at transmitter through the reduction in Vdd, the
usage of differential receivers, as well as the employ of techniques that provide less
reliable data reception (if this is affordable from the specifications of target system).
In addition to that, the design of the physical layer includes tasks that affect the
pseudo-differential signaling at receiver (e.g., reference signal sharing, less signal
transitions, and reduced noise margin). Finally, since the clocks are extremely energy-
inefficient, whereas the global synchronization of interconnection architecture is not
optimal, the usage of Global Asynchronous Local Synchronous (GALS) units might
be a viable solution.

Although such a structured hierarchy in network design is similar to the one found
in LAN networks, the usage of existing algorithms and/or topologies is not suitable
for realizing on-chip communication due to the numerous fundamental differences.

• Dynamic insertion and removal of nodes which is essential in computer networks,
since they are designed for perpetual expansion is not required in NoC-based
MPSoC since the number of nodes is a known priori. The only special consideration
required is when a node or link fails.

• Cost of buffers and links: While buffers are cheap and links costly in computer
networks, the opposite is true for the NoC environment, where it is common to
have 128-bit wide links and even bufferless routers have been proposed.

• Reliability and non-determinism: Designing a reliable NoC architecture is espe-
cially challenging since the interconnection infrastructure is potentially affected
by failure of any node that a flit visits, or failure of any communication link that
it needs to traverse.

• Performance: Despite the common goal for all networks to achieve as much as
possible energy savings, smaller delay and design-time specialization, the usage
of traditional network technologies (such as TCP/IP) to NoCs, entails too much
latency. In addition to that, NoCs exhibit local proximity and less non-determinism.
The first attempts at NoC design were perhaps too computer network-influenced,
often underestimating or even ignoring the above fundamental differences.
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1.4 Benefits and Challenges of Adopting NoCs

Traditionally, ICs have been designed with dedicated point-to-point connections,
with one wire dedicated to each signal. For large designs, in particular, this has
several limitations from a physical design viewpoint. The wires occupy much of the
area of the chip, and in nanometer CMOS technology, interconnects dominate both
performance and dynamic power dissipation, as signal propagation in wires across
the chip requires multiple clock cycles. (See Rent’s rule for a discussion of wiring
requirements for point-to-point connections).

NoC links can reduce the complexity of designing wires for predictable speed,
power, noise, reliability, etc., thanks to their regular, well-controlled structure. From
a system design viewpoint, with the advent of multicore processor systems, a network
is a natural architectural choice. A NoC can provide separation between computation
and communication, support modularity and IP reuse via standard interfaces, handle
synchronization issues, serve as a platform for system test, and, hence, increase
engineering productivity.

1.4.1 IP Reuse

Initially, the massive reuse of existing IP blocks is an absolute necessity. The shapes
the IPs to be-reused can take is quite variable: hard (layout-ready) or soft, in house or
third-party, simple or complex (e.g., complete kernels). The NoC interconnect has to
convey transactions between sockets of different protocols (OCP, AXI, proprietary,
etc.), each of which is highly parameterized.

This variety has major impact from a performance perspective. For instance, the
IPs may have to be clocked at different frequencies, whereas regarding their sockets
they may present different data widths, leading to a wide range of peak throughputs
which must be adapted between initiators and targets.

In addition to that, initiators usually exhibit different traffic patterns, in terms of
transaction lengths, address alignments, as well as regularity. Consequently, their
reaction and resistance to latency, or transient back-pressure, might differ as well.
Also, meeting the QoS required by each initiator despite the presence of the other
traffic becomes more challenging as the number of IPs increases.

1.4.2 Power Management

In most SoCs, aggressive power management is becoming a requirement, not only for
handheld devices where it is critical for the system autonomy, but also for desktop
or automotive applications as well, where it has direct consequences on the chip
packaging and system cooling. This power management includes local clock gating
on groups of several flip-flops, global clock gating saving the energy dissipated in an
idle block, and active power supply of some IPs or subsystems. As the NoC crosses
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power domains, it must collaborate with IPs and the SoC power controller, so as to
guarantee the to-be-shutdown domain is empty of transactions, or request the power
supply restoration.

In addition to that, dynamic voltage and frequency scaling (DVFS) is becoming
a common practice, again as the NoC is likely to cross voltage domains, the places
to insert required level-shifters must be cleanly identified. The sensitivity to power
consumption also calls for a tight control of the gate and wire count.

1.4.3 Physical Constraints and Timing Closure

Most IPs shrink with the CMOS process, the NoC does not: it is by definition spread
across the die, making the back-end phase a difficult challenge. On the one hand,
depending on clock frequencies, pipeline stages may have to be inserted, just to leave
margin for spatial propagation delay. On the other hand, long wires are an expensive
resource; the ability to locally adjust the number of wires in the communication
bundles to back-end constraints and performance requirements is key.

1.4.4 Software Observability and Security

If the hardware complexity rises, the software complexity explodes, with conse-
quences on the hardware. Toward this direction, many different software layers col-
laborate on a SoC: Firmware, operating system, drivers, middleware, applications,
sensitive data subsystems, etc., all distributed on the different IPs. The interconnect
infrastructure has to provide mechanisms in order to grant, or deny, the right for
transactions to reach certain targets, depending on initiators and in-band security
qualifiers.

For software debugging reasons, the NoC must be observable to a certain extent.
Error detection and reporting is a minimum, but transaction probing and sometimes
on chip performance measurements are required as well. As on-chip traffic becomes
more and more distributed, observation collection becomes more expensive. Since the
whole traffic on the NoC cannot be observed in real-time, and observation must focus
on strategic traffic such as DRAM accesses. In the end, the cost versus observability
tradeoffs must be left in the hands of the designer.

1.4.5 Verification

In general, IP quality verification is a well-known problem that designers face during
the development of new products. Because of its wide configuration space (thousands
of parameters is a good order of magnitude) verifying the implementation of a par-
ticular NoC is a much more complex problem. To make matters worse, checking
the conformance of the sockets to their respective protocol is not enough: the cor-
rect translation of transactions between the initiator side and the target side must be
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verified as well. In order to address this requirement, depending on the initiator and
target socket configurations, transactions may have to be split, realigned, unwrapped,
etc. On top of this functional verification, the performance of the NoC also has to be
validated.

1.4.6 EDA Design Flow

NoC development overlaps the whole SoC design project lifetime: From early SoC
architecture phase, to final place and route (P&R), passing through performance
qualification, RTL design, IP integration, verification, software integration. One must
pay special attention that a decision taken during an early phase, such as design
architecture, does not jeopardize the feasibility of a later phase, such as back-end.
Moreover, it is not unusual that marketing requirements for a given SoC change
while the chip is being designed, adding or removing some IPs, and thus impacting
the NoC specification.

In addition to that, as the complexity and cost of brand new architectures increases,
organizing projects around reusable platforms becomes more efficient. Small vari-
ations of the platform, or derivatives, may then be brought to the market in shorter
cycles. The interconnect system design methodology must make sure that those late
specification changes are smoothly integrated in the design and verified.

1.5 Research on On-Chip Networks

There are a couple of requirements that every NoC implementation has to meet.
Among others, performance requirements include small latency, guaranteed through-
put, path diversity, sufficient transfer capacity, and low power consumption. Similarly,
regarding the architectural requirements, there is a need for scalability, generality,
and programmability. Apart from them, and due to technology scaling and different
operating conditions, NoCs have also to address issues related to fault tolerance, as
well as valid operation under different QoS demands.

In this section, we provide a review of the approaches of various research groups.
Fig. 1.6 illustrates a simplified classification of this research.

Although NoCs can borrow concepts and techniques from the well-established
domain of computer networking, it is impractical to blindly reuse features of “classi-
cal” computer networks and symmetric multiprocessors. In particular, NoC switches
should be small, energy-efficient, and fast. Neglecting these aspects along with
proper, quantitative comparison was typical for early NoC research but nowadays
they are considered in more detail. The routing algorithms should be implemented by
simple logic, and the number of data buffers should be minimal. Network topology
and properties may be application-specific.
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Fig. 1.6 Typical NoC research area classification [8]

Some researchers think that NoCs need to support QoS, namely achieve the vari-
ous requirements in terms of throughput, end-to-end delays, and deadlines. Real-time
computation, including audio and video playback, is one reason for providing QoS
support. However, current system implementations like VxWorks, RTLinux, or QNX
are able to achieve sub-millisecond real-time computing without special hardware.
This may indicate that for many real-time applications the service quality of existing
on-chip interconnect infrastructure is sufficient, and dedicated hardware logic would
be necessary to achieve microsecond precision, a degree that is rarely needed in
practice for end users (sound or video jitter need only tenth of milliseconds latency
guarantee). Another motivation for NoC-level quality-of-service is to support mul-
tiple concurrent users sharing resources of a single chip multiprocessor in a public
cloud computing infrastructure. In such instances, hardware QoS logic enables the
service provider to make contractual guarantees on the level of service that a user
receives, a feature that may be deemed desirable by some corporate or government
clients.

To date, several prototype NoCs have been designed and analyzed in both industry
and academia but only few have been implemented on silicon. However, many chal-
lenging research problems remain to be solved at all levels, from the physical link
level through the network level, and all the way up to the system architecture and
application software. Additionally, a number of scientific publications onto peer-
reviewed transactions, journals, conferences, and workshops can be found in the
past few years. These publications study various hot topics of NoC, spanning from
software level up to architecture, and hardware implementation.
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Questions

1.1. Why interconnection delay is by far more important as compared to logic
delay?

1.2. Summarize the advantages and disadvantages of employing buses and NoCs.
1.3. What are the main reasons for adopting the NoC design paradigm?
1.4. List the main components of a NoC-based MPSoC, providing appropriate

definitions.
1.5. What are the two fundamental properties for an arbitrarily scalable architec-

ture?
1.6. Summarize the main features of NoC-based architecture.
1.7. What are the main challenges in NoC design?
1.8. Can you describe the OSI layers for a NoC architecture? What is the role for

each of them?
1.9. What are the differences between NoC infrastructure, as compared to the con-

ventional LAN networks?
1.10. Why GALS (Global Asynchronous Local Synchronous) is considered a viable

solution for on-chip interconnection?
1.11. Describe briefly the advantages and disadvantages of using circuit switching

as compared to packet switching.
1.12. Can you describe some open research issues at the NoC domain?
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Chapter 2
NoC Modeling and Topology Exploration

Abstract This chapter describes two of the most important tasks for designing
NoC-based systems dealing with NoC modeling, as well as the topology explo-
ration. For this purpose, state-of-the-art architectural solutions are discussed and
open research topics are highlighted. Additionally, this chapter provides a descrip-
tion of alternative traffic models used as input to the NoC domain for evaluating the
efficiency of various architectural parameters. The last topics discussed in this chapter
are topology synthesis and application mapping onto the derived NoC architecture
under various constraints.

2.1 Introduction

With the advent of chip multi-processors (CMP) and multi-core systems-on-chip
(SoC), the network-on-chip (NoC) paradigm has been proposed as a viable solution
to the problem of connecting the continuously increasing number of processing
cores that are integrated on a single die. The communication problem is expected to
become far more important with the demand for higher processing power posed by
the majority of application domains and the technology scaling.

Even though the NoC-based communication scheme introduces architectural scal-
ability and performance enhancement, as already discussed in Chap. 1, however, care-
ful design is absolutely required in order to achieve these gains. In this chapter, we
discuss a number of architectural issues related to widely accepted NoC topologies.
Additionally, the available academic and commercial solutions for topology mod-
eling and synthesis are presented, whereas the main features/limitations for each
of them are highlighted. In order to quantify the efficiency for each architectural
selection, appropriate benchmarks are also required. For this purpose, throughout
the second chapter we also introduce a number of typical traffic models employed
for the scope of evaluating NoC architectures. Since the design, as well as the quan-
tification of these NoC parameters are rather complex tasks, which cannot be easily
performed without the usage of dedicated software tools, a number of frameworks
are also introduced.

K. Tatas et al., Designing 2D and 3D Network-on-Chip Architectures, 19
DOI: 10.1007/978-1-4614-4274-5_2, © Springer Science+Business Media New York 2014
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2.2 Topology Exploration

Topology refers to the structure of the network and its organization, since it deter-
mines the connections between nodes on chip. More specifically, it has to do with the
number of nodes (either processing cores or storage elements), the routers, the com-
munication links, as well as their interconnection. Similarly, topology exploration
deals with the evaluation of alternative topologies in order to quantify the efficiency
for each of them under various design criteria. Based on the outcome from topology
exploration, device architects perform topology selection. During this task, the most
suitable NoC topology, which satisfies the application’s communication requirements
and imposes the minimum cost (in terms of power/energy consumption, silicon area,
etc), is selected. Note that during topology selection, physical-level constraints are
also taken into consideration. Finally, there is an evaluation step, where the efficiency
of previous selections is quantified.

Up to now, researchers propose the usage of various basic topologies such as a
bus, star, mesh, point to point, as well as hierarchical ones, which can have the same
or different topologies locally and globally (for instance, a locally bus globally mesh
topology).

2.2.1 Regular Versus Irregular Topologies

A first classification of NoC topologies concerns their regularity. More specifically,
depending on the regularity structure of network’s layout, the NoC is character-
ized either as regular, or irregular. Both of these topologies exhibit advantages that
should be exploited by the target application domain. More specifically, a regular
NoC topology assumes a homogeneous distribution of routers, which leads among
others to lower design time and cost. Even though it is possible to incorporate
such a topology to general-purpose SoC designs, it is mostly suitable for mesh-
and torus-based architectures. Additionally, regular topologies are highly reusable
and impose the minimum re-design effort, in case they are employed to different
applications/architectures.

Despite the previously mentioned advantages, the usage of regular topologies
is not widely accepted for commercial products because they impose a number of
shortcomings. These limitations mainly occur due to the nonoptimal utilization of
interconnection network, which in turn results to increased delay and power con-
sumption. In order to alleviate these limitations, the adoption of irregular, or custom,
topologies is also proposed. Since these topologies are mostly application oriented,
they are suitable for SoCs consisted from heterogeneous cores. Additionally, the
design of irregular topologies requires more advanced routing algorithms that take
into consideration the nonuniformity of the underlying network.

For instance, assume a NoC architecture where each of the routers has to be
attached to a different number of nodes. In case a regular topology is employed,
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Fig. 2.1 a regular and b irregular NoC topologies

some of the routers will remain nonfully utilized, which in turn leads to significant
delay, power, and area overheads. On the other hand, it is possible to design a hetero-
geneous NoC architecture, where each router has a different number of ports. Such a
customization of hardware components results to higher performance, as compared
to the case where a regular topology is employed. However, the introduced hetero-
geneity imposes additional design effort both for the routers, as well as for the entire
NoC.

Figure 2.1 gives an example of these two topologies.
As a conclusion, we can mention that it is not possible to design a single NoC

topology suitable for all the application domains, since each of them introduce inher-
ent features and constraints that have to be exploited as much as possible in order
to maximize the efficiency of underlying communication network. For this purpose,
apart from the two previously mentioned extreme solutions, architects also incorpo-
rate to their designs heterogeneous, or piece-wise homogeneous, topologies. These
topologies consist of highly configurable network building blocks (e.g., routers),
which can be customized for a specific application domain (e.g. multimedia, tele-
com, etc).

2.2.2 Direct Versus Indirect Topologies

Similarly, it is feasible to classify the network’s topology either as direct, or indirect.
At a direct topology, each node has a direct point-to-point link to a subset of other
nodes in the system, called neighboring nodes. Direct topologies usually lead to
a higher availability of communication bandwidth, but they impose an increase of
nodes in the system. Hence, there is a fundamental trade-off between connectivity
and cost. A number of existing NoC products incorporate a direct topology, among
others are the Nostrum [1], SoCBus [2], Proteo [3], Octagon [4], etc.
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The majority of directed network topologies have orthogonal implementation
(layout) and the incorporated nodes usually are arranged in an n-dimensional orthog-
onal space. Such an architectural arrangement exhibits the competitive advantage of
simplicity. Hence, it is feasible to employ light and fast enough routing algorithms
that achieve packet routing with comparable performance, but with significant lower
complexity. Typical instantiations of this topology are the n-dimension mesh, the
torus, the folded torus, the hypercube, and the octagon.

Section 2.2.3 highlights the most important of these topologies.

2.2.3 2-D NoC Topologies

A 2D mesh, depicted schematically in Fig. 2.2, is the simplest and most popular
topology for NoCs. It consists of an M × N mesh of switches interconnecting nodes
(e.g., processing cores, memories, etc) placed along with the switches. Every switch,
except those at the edges, is connected to four neighboring switches and one node. In
this case, the number of switches is equal to the number of nodes. In order to realize
the physical communication path between nodes and switches (or between switches),
we employ communication channels, each of which consists of two unidirectional
links between either a switch and a node, or two switches.

The 2D mesh topology assumes that all the links have the same length, and hence
it imposes an inherent regularity which simplifies the physical design considerably.
Also, it is easier to predict the area requirements for mesh topologies, because it
grows almost linearly with the increase in number of nodes. Apart from these advan-
tages, the usage of mesh topology has also some drawbacks. The plethora of routers
incorporated in this topology usually leads to congested regions over the device. For
this purpose, careful design and application mapping has to be performed to avoid
traffic accumulating, especially in the center of the mesh. Note that 2D mesh topolo-
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Fig. 2.2 2-D mesh topology
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gies are most likely to exhibit congestion problems at the center of the architecture,
rather than in the periphery, due to the employed routing algorithms.

An example of this topology can be found in the Chip-Level Integration of Com-
municating Heterogeneous Elements (CLICHE) NoC [5].

Torus is another direct topology, which is formed by an n-dimensional grid with
k nodes in each dimension. Different instantiations of this topology have been pro-
posed. Next, we describe in more detail two approaches widely accepted in designs.
Fig. 2.3 depicts a k-array 1-cube, also referred as 1-D torus, which is essentially a ring
network composed by k-nodes. Even though this topology is simply enough to be
incorporated into designs; however, it leads to a limited scalability and performance
with the increase of nodes.

Similarly, the k-array 2-cube (2-D torus) topology, depicted in Fig. 2.4, exhibits
the layout of a regular mesh except that nodes at the edges are connected to switches
at the opposite edge via wrap-around routing channels. Every switch has five ports,
one connected to the local resource and the others connected to the closest neigh-
boring switches. The limitation of this topology affects the long end-around connec-
tions, since their delay might be significantly increased, depending on the size of
the architecture. Consequently, in order to avoid any timing violation problems, the
length, delay, and power consumption of these links should be carefully taken into
consideration during the design phase.
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Fig. 2.3 1-D torus

IP IP IP

R R R

IP

R

IP IP IP

R R R

IP

R

IP IP IP

R R R

IP

R

Fig. 2.4 2-D torus



www.manaraa.com

24 2 NoC Modeling and Topology Exploration

IP

R

IP

R

IP

R

IP

R

IP

R
IP

R
IP

R
IP

R

IP

R

IP

R

IP

R

IP

R

IP

R
IP

R
IP

R
IP

R

Fig. 2.5 Folded torus

The folded torus, depicted schematically at Fig. 2.5, is an extension of torus topol-
ogy. More specifically, the different pattern of connections found in folded torus
topology, alleviates the limitation of excessive delays for long end-around connec-
tions. Additionally, the inherent regularity of this topology imposes that all the links
exhibit the same physical length and hence delay. Consequently, it is much easier for
the router to determine a shortest path with the same effort. Since the NoCs usually
are employed for application-specific designs, usually architects prefer to modify (or
extend) mesh and tori topologies by adding bypass links in order to achieve even
higher performance at the cost of higher silicon area.

We have to mention that both mesh and torus topologies are possible to be imple-
mented either as direct, or indirect networks.

Octagon is another well-established direct topology found in NoCs. Its simplest
configuration, as it is depicted in Fig. 2.6, consists of a ring of eight nodes, which are
connected by 12 bi-directional links. These links provide two-hop communication
between any pair of nodes in the ring. This allows the usage of simple algorithms
for performing fast yet efficient shortest-path routing. This topology assumes that
each node is associated with a node and a switch, whereas in order to accomplish
the necessary communication between any pair of nodes, at the most two hops are
required within the basic octagonal unit. In case, a platform consists of more than
eight nodes, the octagon is extended to multidimensional space. More specifically, at
this approach one of the nodes per octagons is employed as a bridge between differ-
ent octagons. Of course, such type of interconnection mechanism usually imposes
significant increase in wiring complexity.

Apart from the previously mentioned direct topologies, a number of indirect
topologies are also widely accepted for the design of NoC architectures. Figures 2.7
and 2.8 give two similar topologies named fat-tree and butterfly fat-tree, respec-
tively. In both topologies, the nodes are connected to an architecture’s external
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switch, whereas the switches have point-to-point links to other switches. More specif-
ically, whenever an architecture incorporates this type of interconnection network,
the processing units and memory modules are assigned to the leafs of the trees,
the switches are placed at the vertices, whereas the communication path involves
climbing up and down some part of the tree.

R

IP IP

R

IP IP

R

IP IP

R

IP IP

R

R R

Fig. 2.7 Fat-tree topology
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A pair of coordinates is used to label each node, (l, p), where l denotes a node’s
level and p gives its position within this level. Based on this assumption, the addresses
for the N nodes found at the lowest level range from 0 to (N − 1). The pair
(0, N ) denotes the locations of nodes at that lowest level. In order to accomplish
the requirement for higher communication demand closer to the root of the tree, as
compared to its leafs, the fat-tree-based topologies incorporate more links near the
root of the tree.

A butterfly network, depicted in Fig. 2.9 can be either uni-, or bidirectional. For
instance, a simple unidirectional butterfly network consists of eight input ports, eight
output ports and three router levels, each of which contains four routers. Packets
arriving to the inputs on the left side of the network are routed to the correct output
on the right side of the network. In a bidirectional butterfly network, all the inputs
and outputs are on the same side of the network. At this approach, all the packets
coming to inputs are first routed to the other side of the network, then turned around
and routed back to the correct output [6].

R R

RR

IP

IP

IP

IP

IP

IP

IP

IP

Fig. 2.9 Butterfly topology with four inputs, four outputs, and two router stages each containing
two routers
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Polygon, shown in Fig. 2.10, is another widely accepted topology. The simplest
polygon network corresponds to a circular network, where packets travel in a loop
from one router to the next. In case we add chords to the circle, the network become
more diverse. However, if chords are inserted only between opposite routers, the
topology is called a spidergon.

A star network consists of a central router in the middle of the star, and computa-
tional resources, or subnetworks, in the spikes of the star. The capacity requirements
of the central router are quite large, because all traffic between spikes goes through
the central router. That causes a significant possibility of congestion in the middle
of the star. Figure 2.11 shows a typical instance of a star topology.

Finally, there are designs where the usage of NoC is fully customized, or ad-hoc,
topologies, are suitable. Figure 2.12 shows a typical example of two custom NoC
topologies. These topologies are composed of a mix of shared bus, direct, and indi-
rect NoC topologies. The competitive advantage of such application-specific (cus-
tom) topologies is the significant improvement to the overall network performance.
On the other hand, the shortcoming of this selection concerns the penalty in the
structured wiring, which is nonetheless one of the main advantages offered by regu-
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lar on-chip networks. Designers pay effort to provide an acceptable trade-off between
these two approaches through the appropriate insertion of application-specific long-
range links to regular architectures. Even though such a selection boosts the network
performance, without mentionable impact on the network’s regularity and its area
requirements, the long-range paths at regular topologies usually impose links with
varying lengths and performance metrics (which are not desirable especially for
sufficient packet routing).

2.2.4 3D Topologies

Three dimensional (3D) chip stacking is touted as the silver bullet technology that can
keep Moore’s momentum and fuel the next wave of consumer electronics products.
Apart from the flexibility imposed by this new design paradigm, one of the major
challenges that designers face today in 3D integration is how to achieve both the
interconnection across the components within a layer, as well as across the layers
in a scalable and efficient manner. A viable solution to this problem is the usage of
NoCs.

The previously mentioned topologies are applied to provide traffic communica-
tion for planar (2D) architectures. However, in the last few years there is an effort
from academia, research centers and industry on designing 3D architectures, where
a number of nodes are assigned to different layers, whereas the connectivity between
adjacent layers is provided through vertically aligned Through-Silicon Vias (TSVs).
By combining the advantages provided by 3D integration with the increased scal-
ability found in NoCs, this new design paradigm seems promising to provide the
communication infrastructure for the next generation of complex systems. More
specifically, the locality along the z-axis leads among others to significantly reduced
interconnect delay, canonical interconnect structure, increased flexibility, as well as
integration of dissimilar systems and technologies. However, in order for these archi-
tectures to become widely accepted, novel design methodologies and tools, which
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take into consideration the inherent features provided by this new process technology,
are absolutely critical.

As we will discuss in upcoming chapters, almost all of the previously mentioned
topologies are also applicable to the 3D domain, if they are appropriately extended.
For instance, a typical extension affects the increase to the number of router’s ports.
Assuming we have a mesh topology, then it is possible to make the transition from
2D to 3D NoC architectures by equally distributing tiles onto the device layers of the
3D architecture. However, as we depict in Fig. 2.13, the 3D mesh topology imposes
the usage of 7-port switches rather than the 5-port employed at the corresponding
2D architecture.

The diameter of 3D mesh can be defined as D = d(k−1), where d represents the
dimension and k is the number of nodes in plane. A Torus network is same as mesh
network with boundary nodes connected by wrap-around edges. These wrap-around
edges significantly reduce the overall diameter of the network and thus improving
the throughput and latency. Figure 2.14 shows 3D torus architecture and partitioning
approach into quadrants. The diameter of torus can be defined as follows: D =
d
(
� nx

2 � + � ny
2 � + � nz

2 �
)

, where nx , ny and nz is the number of nodes in plane x , y,

and z, respectively.
An alternative approach for designing 3D NoCs with improved area footprint

per tile assumes the implementation of the processing element and the router in a
distributed fashion across layers. Additionally, a low-diameter 3D NoC is studied in
[7], where device architects leverage long wires to connect remote intralayer nodes.
A novel layer-multiplexed 3D network architecture with vertical multiplexing and
de-multiplexing links is proposed in [8], whereas a survey that summarizes the pros
and cost of using various topologies for 3D NoCs can be found in [69, 70].
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Fig. 2.14 3-D torus topology

As a conclusion we can mention that it is not possible to find an optimal NoC
topology, since its efficiency depends highly on the inherent constraints posed by the
target application domain. We have already highlighted that the mesh topology is the
one easiest to implement because it introduces the minimum design complexity. More
specifically, the mesh topology exhibits some desirable properties of its own, such
as a very simple addressing scheme and multiple source-destination routes, which
give robustness against to network disturbances. The low-dimension topologies are
favored in case there is an increased demand for bandwidth between switches and
the delay caused by switches is comparable to the inter-switch delay. On the other
hand, if the target application exhibits a high degree of locality at the communication
pattern, then there is a demand for higher order dimension topologies.

2.3 Traffic Modeling

Usually, the formal description of NoC architectures is based on states and transitions
among states that are caused by various actions in the system. Such a model represents
an abstraction of the system’s behavior, which is sufficiently accurate, yet tractable,
for analysis, and verification purposes. Measuring and comparing performance, cost,
and other architecture parameters, is an important challenge that has been hardly
addressed so far. Unfortunately, conventional benchmarks for multiprocessor systems
[9, 10] are usually application oriented, and hence they cannot be used directly for
quantifying communication-intensive architectures, such as NoCs. Moreover, the
current SoC benchmark circuits (like ITC 2002 [11]), consist only of a very limited
number of blocks, which is not the case for scalable NoC-based architectures. Finally,
since the traffic at NoCs varies considerably during the application execution, more
advanced traffic models have to be incorporated in order to study in detail the behavior
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of target system. For this purpose, throughout this section we describe a number of
well-established traffic models employed for evaluation purposes at the NoC domain.

2.3.1 Available Models for Traffic

The design of NoC architectures requires mechanisms for accurately predicting the
network usage in advance, instead of designing, or fabricating, the NoC and after-
wards evaluating its performance. In order to address this requirement, architects
employ various traffic models for determining and quantifying the impact of criti-
cal parameters for the underlying network. More specifically, a traffic pattern [6] is
a graph that describes both the spatial, as well as the temporal distribution of net-
work traffic (data and signal communication among nodes). In general, this graph
focuses on the amount of traffic that has to be transmitted to the NoC and not on the
dependencies between nodes. Even though this implies that the conclusions derived
by employing such graphs might not correspond to the actual system requirements;
however, their usage is desirable especially during the initial design phase in order
to quantify specific characteristics of the underlying architecture. Additionally, with
these traffic models it is feasible to have an abstract overview about the impact of
various traffic patterns at the performance of NoC architecture.

Traffic models are classified either as realistic or synthetic. Specifically, realistic
traffic models are traces of application execution onto NoCs. On the other hand, the
synthetic traffic patterns correspond to abstract models of packets exchanged between
nodes of the NoCs. In contrast to realistic traffic, which is representative of a more
specific class of applications, synthetic traffic is generated based on mathematical
models. Hence, it covers a broad class of applications executed onto NoC platforms.
The competitive advantage of incorporating synthetic models is that it allows a net-
work to be stressed with a regular and predictable pattern. However, since they do
not represent traffic from real-life applications, they cannot be employed for accurate
design-space exploration, whenever an application-specific NoC platform has to be
designed.

Apart from the traffic modeling, tools that enable traffic generation are also impor-
tant during the exploration phase. Due to the importance of this task, up to now
numerous traffic generators have been proposed [12–16]. In Brebner and Levi [17],
a traffic generator is introduced that supports both uniform and burst mode distribu-
tions. Additionally, this solution is able to generate stochastic traffic based on input
traces generated by real-life applications. A similar work that explores and ana-
lyzes numerous architectural characteristics of NoCs, by generating different types
of traffic, can be found in [18].

Next, we summarize the main features provided for a number of well-established
traffic models.
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2.3.2 Synthetic Traffic: Temporal Distribution

A temporal distribution determines how an individual node generates traffic over
time and how this traffic is propagated to the NoC architecture. This distribution
includes a list of traffic properties, such as the period (or rate) of generating messages,
while typical values for this parameter are constant (periodic), random, normal, etc.
Similarly, it is possible to perform another classification based on their timing infor-
mation. Next, we describe in more detail the properties for three different temporal
distribution models.

Perfect synchronous model: The perfect synchronous model is based on the “perfect
synchrony hypothesis” [19]. This approach assumes that neither communication
nor computation tasks take time. In other words, whenever we employ the perfect
synchronous model, the result of a computation is available at the same time that the
input is applied. Additionally, if several processes are interconnected, then the result
of computations will ripple instantly through the system. Even though the perfect
synchronous model is easy to understand, it leads to nonrealistic results, since it does
not take into consideration any timing information. Hence, the conclusions derived by
incorporating this approach might differ a lot compared to a more accurate approach,
or the actual NoC implementation.

Clocked synchronous model: This approach is based on “synchronous hypothesis
assumption” [19], which assumes that a global clock signal is responsible to con-
trol the start for each computation in the system. More specifically, in the clocked
synchronous model, the communication takes no time, while the computation is per-
formed at only one clock cycle. Consequently, this approach is suitable for being
used at cycle-true models. On the other hand, the limitation of this model affects
the lack of awareness to take into account physical time, since the time period is
expressed in clock cycles.

Discrete event model: In contrast to the previous two time-driven models, the func-
tions that take place at the discrete event model are evaluated only on certain events.
This enables time to be expressed in floating point format, which in turn allows the
simulation of physical time. This feature simplifies considerably the simulation pro-
cedure, whereas the corresponding flexibility becomes far more important whenever
the model consists of multiple time domains. On the other hand, the usage of an event
queue might lead to a performance degradation. Even though such a penalty might
be negligible for systems that are frequently idle; however, it becomes especially
critical for architectures with increased switching activity.

Additionally, there are available various traffic models for NoC topologies, which
support the packet generation for different rates. More specifically, these models are
summarized as follows:

Uniform: This is the simplest traffic model. Assuming a network with N nodes, the
probability for a node to send a packet to another node at this model is equals to
1/(N − 1). A restriction to this approach is that a node does not send data to itself.
Additionally, for simplicity reasons, uniform distribution assumes that the length of
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a packet, the latency between packets, as well as the destination node for packets are
randomly chosen using utilization ratios, which are defined either by the designer or
through a random process.

Uniform Random: A node that is supposed to use this traffic pattern sends packets
randomly to other nodes with an equal probability λ = 1/N , where N is the number
of nodes in the network. A typical solution for providing such kind of traffic is with
the usage of TGFF tool [6], which allows to define both the number of computational
tasks, as well as the communication transactions.

Locality: At this model, the probability P for a node to send a packet to a destination
node depends on the source-destination distance (i.e., the number of links from
a source router to a destination router). This probability is computed as follows:
P(d) = 1

A(D)×2d , where D corresponds to the maximum distance in the network

and A(D) = ∑D
d=1

(
1

2d

)
is a normalizing factor guaranteeing that the sum of all

probabilities is equals to 1. Note that within a set of nodes with the same distance,
each node is selected with uniform probability.

Nearest Neighbor Traffic: At this model, a constant percentage of traffic goes to the
nearest neighbors (with a predefine radius r ) and the rest of the traffic is distributed
with uniform and random models. Such an approach is commonly used to evaluate
the impact of communication locality on the performance and power consumption
of the NoC [6].

HotSpot: This scenario selects �N/M�2 of the nodes (N is the total number of
nodes) as traffic hotspots, where M ∈ {2, 4, 8, . . . , N }. Certain fraction p (usually
p ∈ {0.5, 0.7}) of traffic is targeted to these hotspots (one is selected at a time by
uniform random selection). The other traffic is sent uniformly to all other nodes. Both
number of hotspot nodes M , as well as their fraction ρ are user-defined parameters.
A variant of this scheme selects different hotspots for each source.

Burst-Mode: This traffic distribution assumes that all the packets are sent according
to a fixed packet generation rate, whereas at the stable state, there is no traffic between
nodes for a predefined amount of time. Both of these time periods are tunable by the
designer in order to study different utilization of network architecture. Such a type
of traffic is suitable for emulating typical burst modes generated from real cores.

2.3.3 Synthetic Traffic: Spatial Distribution

Uniform: At this approach, each node sends packets to randomly chosen destination
node. Even though this is one of the simplest traffic models, its simplicity might lead
to nonacceptable results for evaluation of NoC architecture.

Bit Permutation: At the bit permutation traffic, each source sends all of its traffic
to a single destination. The destination node in this approach is performed based
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on a function of the source address (this is also known as bit permutation pattern).
On other words, a given source node sends only to one destination node, whereas
the address of destination node is a function of the source node address. Because
this type of traffic concentrates load on individual source-destination pairs, they tend
to stress the load balance of a topology and routing algorithm. Details on how to
generate these traffic patterns are given in [6].

Transpose: Transpose: In transpose traffic, the destination coordinates are the trans-
pose of the source coordinates. Under this load, the network’s diagonal bisection is a
bottleneck as all packets must cross it. By incorporating transpose traffic in conjunc-
tion to with appropriate NoC routing algorithms, it can produce a highly imbalanced
network load, since the links counter-clockwise about the center of the mesh are
utilized while the clockwise links are unused.

Bit Complement: Another commonly used load traffic is bit complement in which
each node exchanges packets with a node on the opposite side of the network at a
uniform random distributed offered rate. Since not all nodes are equal senders or
receivers of traffic, usually bit complement model does not closely match the actual
traffic of the NoC architecture. In order to compute the coordinates of destination
node at this traffic model, we perform a bit-wise inversion of the source coordinates.
This load stresses the horizontal and vertical network bisections. Under this load, a
NoC statically spreads traffic across all of the bisection links, providing a perfectly
balanced network load.

Bit Reverse: In the traffic pattern generated according to the bit-reversal permutation,
a message generated in the source node X = X1 X2 . . . Xn is destined for node
B(x) = Xn Xn−1 . . . X2 X1; that is, the reversed order of the bit pattern x .

Bit Rotation: The bit rotation pattern is similar to the bit permutation and assumes
that the destination address is obtained by rotating the bit string representation of the
source node address to the right by one. For instance, suppose that the number of
nodes N is a power of 2, and m is the number of bits used to express the addresses
of source and destination nodes. Then, bit rotations are those in which each bit di of
the m-bit destination address is a function of one bit of the source address, s j , where
j is a function of i . For the bit rotation pattern, di = s(i+1) mod m .

Shuffle: This traffic pattern is similar to bit rotation, but the destination node is
retrieved as follows: di = s(i−1) mod m .

N Complement: Similarly to Bit Rotation, this scenario creates load on source-
destination pairs. Suppose that nodes are numbered as naturals 0, 1, 2, . . ., N − 1. In
case the address of a source node is ns , then the corresponding destination address at
this traffic model is node nd , such that ns + nd = N . For example, if a network has
seven nodes, the nodes are numbered as 0, 1, . . ., 6. Source nodes 0, 1, 2, 3, 4, 5, and
6 will select destination nodes 6, 5, 4, 3, 2, 1, respectively. We have to notice that for
both permutations traffics (Bit Rotation and N Complement), the numbering of nodes
determines the actual spatial distribution of traffic. It is advised that nodes should
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Fig. 2.15 A fork-join pipeline with three parallel branches and a depth of 3, i.e., c = 3 and e = 3

be regularly numbered according to their topology. This also implies that these two
traffic patterns are most beneficial to regular topologies.

Tornado: At this traffic model, each node sends packets halfway around the mesh
along the X -dimension. This workload is a challenge especially for rings and meshes.

Fork-Join Pipeline: A fork-join pipeline [20] is a traffic pattern where a fork node
feeds c nodes that are the starting point of c parallel pipelines. Each pipeline has a
depth of e nodes. At the end of the pipelines (after e stages), the data are merged
into a join node. An example of a fork-join pipeline in a 4×4 mesh network with
c = 3 and e = 3 is shown in Fig. 2.15. In general for 2D meshes, c is set to c = h =
�√N − 2�. Hence, for a 4×4 network, we have c = e = 3.

At the example depicted in Fig. 2.15, we map the nodes’ coordinates to integers
in order to compare different topologies, whereas this approach is applicable both
for 2D (mesh, torus, fat tree, irregular, etc) and 3D (cube, irregular etc) topologies.
For instance, as illustrated in Fig. 2.15, a node (x , y) maps to an integer I by I =
x + (y × Ny), where Ny is the maximum number of nodes along the Y axis for the
2D mesh. Apart from this example, the user may define his/her own mapping from
2D/3D coordinates to integers.

2.3.4 Realistic Traffic

Apart from the previously mentioned synthetic traffic models, it is common to eval-
uate NoC architectures with the usage of traffic captured from real applications. This
traffic, also known as realistic traffic, allows the designer to analyze with acceptable
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precision a number of architecture-oriented parameters such as delay and power
consumption.

It should be noted, however, that the traffic patterns generated by different modules
in a NoC strongly depends on the application for which the NoC is designed. Since
the performance of the NoC is a function of the traffic profile, the most accurate way
to assess the characteristics of the NoC would be to generate application-dependent
traffic profiles.

Even though this is the optimum scenario, usually the design of systems affects
devices that can perform sufficiently for a (wide) range of applications. In these
cases, the employed traffic profiles have to stress the underlying NoC with a way that
(almost) corresponds to the the actual application execution. Various approaches for
realistic traffic have been proposed the last years. Among others are the GSM voice
CODEC [21], SPLASH-2 [22], MediaBench [23], and SPEC [24] traffic profiles.

Unfortunately, such a selection might lead to excessive time period for profiling,
even if all the applications are known beforehand. In order to overcome this limitation,
designers usually employ synthetic traffic profiles (as they were discussed in previous
section), which can represent the traffic for a class of applications. This suggests that
the use of both realistic and synthetic traffic profiles forms a complete set for the
evaluation of the techniques proposed for NoC systems.

2.4 Topology Modeling

This chapter discusses the modeling of NoC topology, which is used for the pur-
poses of encoding the application implementation onto the underlying architecture.
Conceptually, the purposes of NoC modeling are to explore the vast design and fea-
ture space, as well as to evaluate trade-offs between various design parameters (e.g.,
power, area, design-time, etc); while adhering to application requirements on one side
and technology constraints on the other side. As it is discussed in survey [25], NoC
modeling has three intertwined aspects: modeling environment, abstraction levels,
and result analysis.

2.4.1 Modeling Environment

A key aspect in NoC design is model creation, since it is a concrete representation of
functionality for a target NoC. Hence, whenever a NoC is going to be incorporated
at a SoC, proper modeling approaches both for the NoC’s topology, as well as the
NoC stack protocol, are absolutely required. This enables the flexible architecture
specification and the considerable speed up of exploration procedure for different
interconnection solutions.

The NoC models found in relevant literature can be classified either as analytical,
or simulation based. More specifically, an analytical model relies on mathematic
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equations that describe the functionality of underlying network. Even though this
approach might lead to the most accurate results (in case the NoC is properly mod-
eled), it imposes the maximum computational effort. This limitation makes the usage
of analytical models to be applied only to simple and small NoCs, whereas the archi-
tectural parameters that are studied are usually very limited. On the other hand,
recently there is an increased interest for NoC simulation environments. These solu-
tions provide a number of competitive advantages which enable designers to study
the NoC under different topologies and operating conditions. Among others, by
using simulation-based approaches it is feasible to model the entire NoC protocol
stack, which allows designers to guarantee proper functionality for the communica-
tion infrastructure. Additionally, the opportunity to perform co-simulation between
the network and the rest of the chip is very important in order to test the proper
functionality of complex systems.

Madsen et al. [26] and Mahadevan et al. [27] introduce an abstract framework
for NoC modeling using allocators, scheduler, and synchronizer. The allocator trans-
lates the path traversal requirements of the message in terms of its resource require-
ments (e.g., bandwidth, buffers, etc) and attempts to minimize resource conflicts.
The scheduler executes the message transfer according to the particular network
service requirements having as goal to minimize resource occupancy. Finally, the
synchronizer models the dependencies among communicating messages allowing
concurrency.

A commercially available network simulator, named OPNET, is discussed in
[28, 29]. This software supports also hierarchical modeling of networks, includ-
ing processes (state machines), various topologies, and simulation of different traffic
scenarios. The work described at [29] uses OPNET to model a QoS-based NoC
architecture and design with irregular network topology.

Another framework for NoC modeling, named OCCN, is discussed in [30]. This
framework is based on open source C++ code build on top of SystemC. In order
to simplify the task of implementing communication drivers at different levels of
abstraction, it uses a number of generic message passing APIs.

A cycle accurate RTL model for quantifying the performance and power/energy
consumption of NoCs is discussed in [31]. Both delay and power/energy consump-
tions are quantified at fine-grain level (e.g., building components of routers and links),
with the usage of SPICE simulations for a 0.18 um CMOS technology. Power analy-
sis for dynamic power consumption can also be evaluated with the usage of Orion
simulator proposed by [32].

Even though simulation-based NoC models are able to simulate complex inter-
connection architectures, they exhibit the limitation of increased computational com-
plexity. In order to alleviate this problem, researchers have proposed the usage of NoC
emulation. Such a selection reduces the simulation period from hours (required to
process through many millions of cycles as would be necessary in any thorough com-
munication co-exploration) to a few minutes. Additional speedup at this procedure
can be achieved with the usage of hardware accelerators, such as the FPGA-based
emulation discussed in [19].



www.manaraa.com

38 2 NoC Modeling and Topology Exploration

Fig. 2.16 Modeling
of different
abstraction levels

Testbench

Functional

Transactional
behavioral

Transactional 
CA

RTL

Gate

2.4.2 Different Abstraction Levels for Noc Modeling

Another critical issue for NoC modeling is the usage of different abstraction levels.
This task is software supported with a number of hardware description languages,
like SystemC (a library of C++) [33] and SystemVerilog [34]. A summary of avail-
able communication primitives at different levels of abstractions can be found in
[25, 71]. Based on analysis discussed in [35], there are five abstraction levels, as
they are depicted in Fig. 2.16.

Functional models usually have no notion of resource sharing or time. This imposes
that the functionality is executed instantaneously, or as an ordered sequence of events.
The functional model may or may not be bit-accurate. This layer is suitable among
others for system concept validation, functional partitioning between control and
data, including abstract data type definition, hardware or software communication,
and synchronization mechanisms. Models are usually based on core functionality
written in ANSI C and a SystemC-based wrapper.

Transactional behavioral models, denoted also as transactional, are functional mod-
els mapped to a discrete time domain. The transactions at this model are assumed to
be atomic operation, while the duration for each of them is stochastically determined.
Even though it is not always possible to model general transactions on bus protocols,
transactional models are particularly important for protocol design and analysis, as
well as communication model support. Below this level of abstraction, NoCs impose
additional identifiers (i.e., addressing), in order to uniquely define the traversal path,
or to provide services for end-to-end communication.

Transactional Cycle-Accurate (CA) models map transactions to a clock cycle, in
contrast to the previously mentioned asynchronous models. This allows synchro-
nous protocols, wire delays, and device access times to be accurately modeled. The
usage of transactional CA model is very important especially for functional and
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cycle-accurate performance modeling of abstract processor core wrappers (called
bus functional models), bus protocols, signal interfaces and testbenches, in a simple,
generic and efficient way using discrete-event systems. We have to notice that trans-
actional CA models are similar to corresponding RTL models, except that they are
not synthesizable.

Register-Transfer Level (RTL) models correspond to the abstraction level from
which synthesis tools can generate gate-level, or netlist, descriptions. Systems that
are modeled with such an approach are usually visualized as having two compo-
nents: data and control. More specifically, the data part is composed of registers,
operators, and data paths, whereas the control part provides the time sequence of
signals that evoke activities in the data part. Data types are bit-accurate, interfaces
are pin-accurate, and register transfer is accurate. Similarly, propagation delay is
usually back annotated from gate models.

Gate models are the last of the available abstraction levels, aiming to provide a
system description in terms of primitives, such as logic with timing data and layout
configuration. For simulation purposes, gate models may be internally mapped to
a continuous time domain, including currents, voltages, noise, clock rise, and fall
times.

A comparative study for the three communication models used in parallel com-
putation, namely the synchronous communication which rewards burst-mode mes-
sage transfers, the asynchronous communication with fixed message size, and the
asynchronous with variable message size communication while also accounting for
network load, can be found in [36]. A similar study of parallel computation appli-
cations, but with a more detailed network model, was undertaken by [37]. This
approach assumes that the underlying network uses adaptive routing with virtual
channels. Finally, at [38] is shown how a mixed abstraction-level design flow was
employed for the design of two different NoC topologies.

2.5 Topology Synthesis

One of the most challenging tasks during the NoC design affects the topology syn-
thesis. Specifically, the NoC topology synthesis problem aims to generate at physical
level the selected network-based communication infrastructure. As constraints to this
procedure are the multiple design objectives posed by system specification, such as
performance, power, and area metrics. The tasks that take place at a typical framework
for designing NoC architectures are depicted in Fig. 2.17.

In the outer iterations, a number of operational (e.g., frequency) and architectural
(e.g., link width) parameters are varied within a set of suitable values. The selected
parameters are typically employed during NoC exploration, since the product of
the NoC frequency and the link width corresponds to the available bandwidth. In
case we perform an exhaustive exploration, then topologies with different numbers
of switches should be explored, starting from a topology where all the cores are
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Fig. 2.17 Tasks for designing NoC architectures

connected to one switch, to one where each core is connected to a separate switch.
For each of the architectural parameters of the design space, we perform the topol-
ogy generation in order to ensure that the traffic on each link is less than or equal to
its available bandwidth. Then, an analysis step takes place in order to evaluate the
efficiency of derived architecture. For accurate analysis, a floorplaning task to deter-
mine the 2D position of the cores and network components has also to be undertaken.
Based on the frequency point and the obtained wire lengths, any timing violation
on the wires is detected and the power consumption on the links can be retrieved.
Eventually, from the set of all synthesized topologies and architectural parameter
design points, the topology and the architectural configuration that optimize the
user’s objectives, while satisfying all the design constraints, are chosen.

The outcome from topology synthesis is either a regular or an irregular NoC topol-
ogy. Regarding the regular topology, it is suitable for standard architectures (e.g.,
mesh and torus). However, in case such a topology is applied to a heterogeneous
MPSoCs, the derived communication scheme usually exhibits poor performance
and large power/area overheads due to the nonoptimal utilization of interconnec-
tion resources. In order to overcome this limitation, customized NoC topologies can
also be generated. Even though these architectures impose significantly increased
design overhead, because the target system included cores of different sizes and
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shapes, as compared to previously mentioned regular topologies, they result to supe-
rior performance in terms of various design parameters under identical performance
requirements [39].

Due to the importance of developing application specific NoCs, a number of
design methodologies have been proposed, each of which aims to tackle a different
optimization problem. A constraint-driven communication synthesis approach based
on specifications posed by the point-to-point communication specifications is dis-
cussed in [40]. The derived architecture consists of optimized channels obtained by
merging, or separating the original point-to-point links. Similarly, a heuristic for the
constraint-driven communication synthesis of on-chip communication networks is
presented in [41], while [42] describes a design methodology targeting to synthesize
NoC architectures, where long-range links are inserted on top of a mesh network.

The advantages of employing a library-based approach to NoC design, where pre-
designed soft macros are appropriately instantiated and interconnected in order to
form arbitrary topologies, are summarized in [43, 44]. However, the full exploitation
of customized network topologies requires an ad hoc design methodology spanning
different levels of abstraction (ranging from application specification to physical
implementation), in order to derive the most efficient NoC configuration for a given
application domain. Another network design methodology that supports several para-
metrization options including topology is discussed in [45]. This approach is based
on building a library of components that can be appropriately combined in order to
realize the different communication networks.

Apart from the 2D architectures, academia, research centers, and industry focus
also on the design of NoCs targeting to 3D SoCs. The synthesis of these intercon-
nection architectures introduces additional challenges, both in hardware, as well as
at the algorithmic level, that have to be sufficiently addressed. New switch architec-
tures for 3D NoCs have been presented in [46], and are further discussed in Chap. 3.
Efficient application-specific 3D NoC topology synthesis algorithms are studied in
[47]. Another 3D topology synthesis algorithm based on a direct extension of the 2D
NoC synthesis procedure is discussed in [48]. This approach assumes that each of
the NoC’s layers is designed separately and then we determine the connectivity of
the switches across the layers. Apart from the flexibility of this approach, it does not
tackle issues related to the assignment of switches to layers, the placement of TSV
macros and network components with minimum perturbation of the input floorplan,
etc. A more flexible toolflow for performing application-specific synthesis of 3D
NoCs is the SunFloor_3D [49]. Among others, this flow can determines the most
candidate NoC topology for a given application, finds the paths for data transfers,
assigns the network components onto the 3-D layers and places them.

2.6 Application Mapping

After defining the network’s topology, the last step involves the application mapping
onto the target NoC architecture. As the distance traversed by packets in the network
is tightly firmed to the performance of target architecture, the mapping of the SoCs

http://dx.doi.org/10.1007/978-1-4614-4274-5_3
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modules into the NoC structure is an important step in the design process. Intu-
itively, the mapping problem deals with determining how to topologically arrange
the selected application’s kernels onto the target architecture, such that certain met-
rics of interest (e.g., area, bandwidth, latency) are optimized. Hence, communicating
modules should be placed in close proximity if they exchange large amounts of data,
or if they require a short network latency. Constraints to selections performed during
this task are posed by the system’s specifications.

Even though application mapping is not a NoC-related problem, we will discuss
a number of representative approaches found in relevant references. Typically, the
inputs to a NoC mapping algorithm are: (i) the dataflow graphic (signals that have to
be transferred between nodes) and (ii) the maximum affordable delay between each
pair of nodes. At the conventional graph representation of flow bandwidth, each data
link is bounded to a specific sender and receiver without allowing any flexibility.
Since the NoC infrastructure enables a sender to communicate with any other node,
binding a flow to a particular pair of module instances is an unnecessary and expensive
constraint. Alternatively, it is possible to allow mapping algorithm to benefit from the
existence of identical modules, by appropriately assigning flows to the best replica
within a module class. Consequently, as flows are no longer associated with particular
modules within a class, this provides additional flexibility to the mapping algorithm
resulting in a more efficient design.

Moreover, the maximum allowed delay between each pair of nodes limits the
potential cost reduction in the mapping phase. By specifying only pair-wise node-to-
node timing requirements, the application level data flow is ignored and the latency
requirements are over constrained. The evaluation of an extended modeling of the
SoC which captures the application’s latency needs in a more appropriate way is
discussed in [50]. In resemblance to re-timing of a logic path in traditional circuit
design, authors at [50] allow trading-off delays between flows that compose a stream
of information processing. More specifically, throughout that work, authors propose
to replace (wherever it is applicable) a “chain” of end-to-end delay constraints with
a single, unified constraint, and describing the latency requirement of an application
stream. This time is measured from the time the first module in the chain generates
the data until the last module receives the data. By using this cross-layer knowledge
of the application needs, the mapping algorithm exploits new degrees of freedom in
the design space in order to reduce the cost of derived solutions.

The majority of existing mapping algorithms mainly target mesh-based NoC
topologies [51–54], because the architectures are most applicable to regular designs.
A mapping technique targeting regular NoCs, which is based on a branch-and-bound
algorithm for performing design space exploration, is presented in [55]. This solution
allows topological mapping of IP cores to network tiles and generation of routing
path for each communicating pair aiming to minimize the energy consumption for
communication architecture under different routing algorithms. A similar work is
discussed in [56], where a branch and bound algorithm aiming to perform mapping
of architecture’s cores onto a tile-based NoC, having as goal to satisfy the bandwidth
constraints and minimize the total energy consumption. On the other hand, there are
also research works dealing with core mapping onto heterogeneous architectures. For
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instance, an algorithm that performs mapping of heterogeneous cores onto a target
NoC architecture is discussed in [53]. This algorithm incorporates also an embedded
floor planner for performing physical prototyping of the derived architectures.

A two-step heuristic mapping approach is discussed in [57]. Given the graphs
of clustered tasks and the distributed architecture, initially this algorithm maps on
adjacent nodes the highly communicative tasks, while the remaining tasks (starting
from those close to the highly communicative tasks) are mapped to the remaining
(unoccupied) nodes. Another two-phase mapping algorithm targeting to map parts
of applications onto processing cores is discussed in [57]. As authors claim, such an
approach leads to lower communication cost. A heuristic approach for application
mapping onto NoC architectures are discussed in [58, 59]. The initial mapping at
this approach is retrieved by focusing to the minimization of communication delay,
power dissipation, as well as silicon area, while the packet delivery is based on a
predefined routing function. Then, by selecting and swapping iterative random nodes,
the algorithm aims to achieve a more efficient application mapping.

The previously mentioned solutions rely on multi-step approaches, where the
mapping is carried out in advance of the routing phase [52, 59, 60]. However, such
a modular (sequential) approach usually leads to nonefficient solutions, because the
objectives from mapping and routing algorithms do not necessarily coincide. Hence,
the routing phase must adhere to decisions already taken in the mapping phase that
invariably limits considerable the routing solution space. In Guerin et al. [61], a
unified algorithm, called Unified MApping, Routing and Slot allocation (UMARS),
that couples mapping, path selection and time-slot allocation simultaneously, using
a single consistent objective, is discussed.

An algorithm for application mapping under bandwidth constraints onto mesh-
based architectures is discussed in [58]. This algorithm, named NMAP, results to
minimum average communication delay both for single minimum-path routing, as
well as split traffic routing. The bandwidth requirements can be further improved by
splitting the application’s traffic across multiple paths. For demonstration purposes,
the efficiency of this algorithm is evaluated under various DSP applications with a
cycle accurate simulator in SystemC, using macros from the ×Pipes library [62].
Apart from single goal optimization constraints, there are also mapping algorithms
guided by multi-objective cost functions [63]. A mapping algorithm that integrates
physical planning and QoS guarantees is discussed in [59], where the design space
is explored with a robust tabu search. A mapping algorithm that guarantees to derive
a deadlock-free deterministic routing targeting to regular NoC architecture, is pre-
sented in [64]. There are also mapping algorithms that provide QoS guarantee assum-
ing static communication flows and traffic that does not vary with input data [65].
An extension of this work is discussed in [52], where the algorithm is extended in
order to balance the network load. Reliability related issues are also addressed during
NoC mapping. For instance, a algorithm aiming to reduce the potential temperature
hotspots and obtain a thermally balanced design in conjunction to the minimization
of communication cost, with the usage of a genetic model is discussed in [66].
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2.7 Benchmarking

The problem of designing efficient NoC architectures is extremely complex, because
it requires an almost exhaustive exploration. Since architecture-level exploration usu-
ally is a timing-consuming procedure, there are different approaches aiming initially
to identify and then to parameterize the architectural components that define a NoC,
their properties, and their interactions. To overcome this limitation, architects usu-
ally quantify the efficiency of NoC-based architectures with the usage of various
test cases, each of which stresses target architecture under different traffic scenario
and/or operating condition. These test cases, also known as benchmark suites, intend
to cover a wide spectrum of NoC design aspects and provide detailed information to
device architects about the performance of different architecture’s components. Note
that these benchmarks are completely different from those employed for quantify-
ing the performance of computer architectures. More specifically, the benchmarks
at NoC domain have to study the impact of numerous (almost) orthogonal design
parameters, such as:

• Different network sizes (small, medium, and large).
• Both regular and irregular topologies.
• Traffic models with different spatial and temporal characteristics that correspond

to various application domains.
• Alternative requirements for Quality-of-Service (QoS), such as best-effort, guar-

anteed bandwidth, guaranteed latency, etc.
• Benchmarks with different composition of IP cores (e.g., number and type of

processing and memory cores).

Similar to our previous discussion about different traffic models (please refer to
Sect. 2.3), the benchmarks can also be categorized as follows:

Application benchmarks: The traffic at these benchmarks is generated either from
programs, or models, which resemble real applications. These benchmarks evaluate
the resources (both computational and communication) of entire platform. Conse-
quently, given the target application(s), or application domain, these benchmarks can
be employed from device architects in order to determine the most suitable architec-
tural parameters for the target NoC.

Synthetic benchmarks: Instead of using a real application, it is possible to incorpo-
rate a synthetic one. These benchmarks are retrieved from a task graph with known
computation times and communication loads among the computing cores. The goal
of these benchmarks is to test and evaluate in detail both the NoC architecture, as
well as the employed design methodology and/or software tools. By using synthetic
traffic, it is easier to gain insight into particular design features of communication
infrastructure, and consequently it is feasible to optimize these parameters under
various architectural and algorithmic (e.g., mapping and routing) constraints.

The usage of both application and synthetic benchmarks exhibits advantages and
disadvantages that should be carefully tackled. More specifically, since the NoC
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design is still in its infancy, generally, companies and institutions are not open to share
specifications, models, and other proprietary data regarding NoCs. This limitation
can be alleviated with the usage of academic, synthetic benchmarks, which can be
shared and used without these limitations. Furthermore, the existence of an open
format for benchmarks specifications makes possible for interested research groups
to contribute with relevant models and test cases.

On the other hand, application benchmarks offer the best accuracy but they are
difficult to be ported to different systems, whereas their simulation is a time intensive
task, compared to synthetic benchmarks. Additionally, application benchmarks scale
poorly with system size, for example the number of tasks, which means that the
maximum number of processing and storage elements, is fixed. In contrast, synthetic
benchmarks are more suitable for benchmarking purposes, because they can exploit
the properties of particular fixed size application benchmarks, but they can also scale
with system size.

Of major importance is the benchmark measurement methodology, which defines
parameters of interest and their points of measurement (in time and space) relative to
the structure and representation of the NoCs. Typical benchmark suites that contain
various representative media applications are the MiBench [67] and Mediabench
[23], whereas Dhrystone [68] is another synthetic benchmark suite that represents
not a specific but an average of applications. Apart from these NoC platform-based
solutions, it is also desirable to have benchmarks able to quantify the efficiency of
supporting algorithms, like mapping, routing, etc.

Even though the previously mentioned benchmark suites are able to stress NoCs
under various parameters, all of them focus on conventional (2D) NoC architectures.
However, the continuously increased number of cores, as well as the requirement for
integrating onto single chip different process technologies imposes the usage of 3D
integration. Consequently, new benchmarks that are aware of the inherent features
and limitations posed by this integration paradigm are absolutely required.

2.8 Exercises

2.1 Draw examples of the most common NoC topologies. Can you summarize the
advantages and disadvantages of alternative NoC topologies?

2.2 Classify the following topologies as direct or indirect: (a) mesh, (b) torus, (c)
octagon, and (d) fat-tree

2.3 What are the differences between direct and indirect topologies?
2.4 Calculate the total number of routers and links in the following topologies: (a)

3×4 mesh, (b) 3×4 torus, (c) a 12-node Spidergon, and (d) a 16-node fat-tree.
2.5 Calculate the average distance between two nodes in the following topologies:

(a) N×N mesh, (b) N×N torus, (c) N -node Spidergon, and (d) N -node fat-tree.
2.6 Do you believe that the ordering of nodes at Bit Rotation and N Complement

traffics affects the actual distribution of traffic?
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2.7 Do you think that in case ordering of nodes at Bit Rotation and N Complement
traffics is performed regularly numbed according to their topology, implies that
these two traffic patterns are most beneficial to regular topologies?

Problems

2.8 Assume that, the maximum distance between a source node and all other nodes
for a polygon-based topology is 2.

(a) What is the probability for a node of sending traffic to another node with
distance 1?

(b) What is the probability for a node of sending traffic to another node with
distance 2?

2.9 A flit has as source address the “0111”. Can you compute the destination address
for this flit, if the bit rotation approach is employed?

2.10 At the bit rotation approach, can you prove that if N is a power of 2, then the
destination node uniquely exists? Otherwise, the destination node address is
determined by destination address = (bit rotationsource address) modulo N .

2.11 A network has 7 nodes numbered from 0, 1, . . ., 6. Can you determine the
destination nodes for node0, node1, . . ., node6 assuming the N complement
approach?
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Chapter 3
Communication Architecture

Abstract The communication infrastructure is the backbone of the NoC system.
After determining the NoC topology for the given application, designing the com-
munication infrastructure is the next step. The routing algorithm is selected based
on both the selected topology and design constraints. After the selection of routing
algorithm and flow control scheme, the router and link design can begin. In this
chapter switching techniques, routing algorithms and flow control schemes are dis-
cussed and compared, while the design of a generic 2D and 3D router is illustrated
and improvements proposed in the literature are discussed.

After topology selection, the next step in the NoC design flow is to select the
appropriate switching technique and routing algorithm based on the design con-
straints. Based on these decisions, the design of the router(s) and channels can begin.

3.1 Switching Technique

The switching technique defines how and when the input channel of the switch is con-
nected to the output channel selected by the routing algorithm. Data are transmitted
as messages that are splitted into packets, which in turn are splitted into flow con-
trol units (flits) and finally into physical units (phits). Switching technique selection
involves selecting the optimal granularity for the above data.

• physical units (phits): the unit of data transferred through the physical link. Essen-
tially, the bit-width or word-length of the channel and, therefore, the number of
bits transmitted between routers in a single clock cycle.
• flow control units (flits): The unit of synchronization between routers. At least as

large as a phit and often equal.
• packets: A set of consecutive flits with the same destination. Routers may store an

entire packet before forwarding it, or transmit flits separately.
• messages: A set of packets that typically corresponds to a complete data trans-

fer (transaction) between nodes. A message could be for example an entire bus
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transaction from processor to memory. Considering that state-of-the-art bus pro-
tocols allow long data bursts, a message may require splitting to many packets.

The two commonly used switching techniques are: (i) packet switching and (ii)
circuit switching.

3.1.1 Circuit Switching

In circuit switching, the network path between two nodes that have to exchange
data is established in advanced (before the data are sent) by allocating the proper
hardware resources (links). Circuit switching is performed in three stages: circuit
establishment (setup), data transmission, and circuit release (tear-down). The setup
procedure requires the head flit (probe) to make its way from source to destination
reserving links in its path. When the head flit reaches its destination, an acknowl-
edgement is returned to the sender, unless a link is reserved by another circuit, in
which case a negative acknowledgment is sent. After a successful acknowledgment,
data transfer begins and lasts until circuit release. Contention can only occur during
the setup phase and buffering is only required for the head flit, since the data are
wired directly from source to destination. Circuit switching between three links is
illustrated in the time-space diagram of Fig. 3.1 ts is the router switching time and tr
the routing decision time.

An advantage of circuit switching is that since the connection over which all
subsequent data are transported is set up first, contention resolution takes place
at setup at the granularity of connections, and time-related guarantees during data

Time

L
in

k

ts+tr ts

tsetup tdata

Fig. 3.1 Circuit switching
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transport can be given. On the other hand, when a circuit between two nodes has been
established, any other communication on the allocated wires is rejected, until the data
transfer is complete, and therefore, other messages may be blocked. Therefore, circuit
switching performs well when large amounts of data are transferred, which help to
amortize the setup time.

The circuit switching approach delay can be calculated as the sum of the setup
time, the data transfer time and the data release time:

tCS = tsetup + tdata + trelease (3.1)

Release of the circuit can be done with the last flit, which can be bundled with
the data, simplifying Eq. 3.1 by considering trelease = 0. It is assumed that the links
are not pipelined or multicycle paths.

tsetup = D

(
tr + 2

(
ts + ph

B

))
(3.2)

tdata = (fl× ph − 1)× 1

B
(3.3)

where D is the distance in hops between source and destination, B is the link
bandwidth in bits/s, ph and fl are the phits per flit and flits per packet respectively,
assuming one flit in the packet is used for setup.

A number of circuit-switched networks have been implemented such as [1, 2]
and [3]. From the above equations, it can be derived that a fast setup process is
desirable in order to have an efficient circuit-switched NoC. In [4], the design and
implementation of a pipeline circuit-switched switch to support guaranteed through-
put was presented. The proposed switch is based on a backtracking probing path
setup called backtracking wave-pipelining. In [5], a parallel probe searching setup
method, which can search the entire network in constant time, dependent on the net-
work size but independent of the network load was proposed. The proposed method
can reduce the search time by up to 20 %.

3.1.2 Packet Switching

Packet switching [6] allows the packets in a message to be transmitted through differ-
ent paths. In order to provide efficient routing, the packet switching typically implies
some restrictions. More specifically, as soon as a flit (head flit) of a packet is sent
over an output port, that output port is reserved for flits of that packet only. Since this
approach uses a finer granularity buffer and channel control at the flit level instead
of the packet level, it exhibits increased performance, especially when messages are
short and frequent. However, in case the head flit of a packet is blocked, the trailing
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flits can therefore be spread over multiple routers, blocking the intermediate links,
causing a condition known as deadlock (see Sect. 3.2.1).

Packet switching includes three subcategories, namely: Store-And-Forward (SAF),
Virtual Cut-Through (VCT), and Wormhole Switching (WS). More specifically, the
store-and-forward approach is based on receiving and storing the whole incoming
packet before it is forwarded to the next router as shown in Fig. 3.2. This approach
requires more buffer space since the complete packet must be stored, which leads,
among others, to a per-router latency of at least the time required for the router to
receive the packet.

The delay of a nonblocked packet in SAF switching is computed as follows:

tSAF = D

(
tr +

(
ts + ph × l

B

))
(3.4)

On the other hand, VCT switching is based on forwarding a packet as soon as
the next router guarantees that the complete packet will be accepted. In case there
are no guarantees, the router must be able to store the whole packet. Consequently,
even though such a routing approach requires buffer space for a complete packet,
like store-and-forward routing, it allows lower latency communication as shown in
Fig. 3.3. Essentially, flits can cut through to the next router input before the packet
is completely received in the current switch, and therefore the packet is pipelined
through the switch. The delay of a nonblocked packet in VCT switching is computed
as follows:

tVCT =
(

ts + tr + ph

B
+MAX

{
ts,

ph

B

}
× ph × fl− 1

B

)
(3.5)
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Fig. 3.3 Virtual Cut-Through (VCT) switching

The worst-case delay of VCT switching is equal to that SAF switching.
Wormhole switching is based on pipelining at the flit level, so the routers are

only required to store a few flits instead of a complete packet. The disadvantage of
this approach is that if a message gets blocked, its flits will occupy buffer slots in
various routers, making it vulnerable to deadlock. A number of NoC architectures are
based on wormhole packet routing [7–10], since it allows low-latency communication
schemes, while it also requires the least buffering (flits instead of packets) among
packet switching methods. This allows relatively small buffers to be used in each
router, even for large packet sizes. The wormhole switching space-time diagram is
shown in Fig. 3.4. As long as packets are not blocked, wormhole switching achieves
the same latency as VCT switching. Since buffers are expensive in on-chip networks
(see 3.4.1), wormhole switching is the most common packet switching technique
used.

In order to prevent a blocked packet to impede the progress of other packets
waiting in line as shown in Fig. 3.5a, the Virtual Channel (VC) flow control for
wormhole switching was introduced [11]. A VC between two resources A and B
is established by allocating time slots (by Time Division Multiplexing - TDM) in
each switch on the path between two resources A and B. The [11] approach assigns
multiple virtual paths, each of which has its own associated buffer queue, to the same
physical channel, in order to allow blocked packets to be passed by other packets as
shown in Fig. 3.5b. Virtual channels arbitrate for physical channel bandwidth on a
flit-by-flit basis (see 3.4.1).

A hybrid switching technique that dynamically combines virtual cut-through and
wormhole switching in order to provide higher achievable throughput values com-
pared to wormhole switching alone, while reducing the buffer space required at the
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Fig. 3.5 a Blocked packet p1 impedes progress of packet p2 b packet can progress by using two
virtual channels

intermediate nodes when compared to virtual cut-through is discussed in [12]. On
the other hand, such a solution results to less efficient link utilization than virtual
cut-through routing, since even though wormhole routing allocates storage and band-
width in flit-sized units, such a flow control holds a physical channel for the duration
of a packet.
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Table 3.1 Switching technique comparison

Switching Performance Buffering Design complexity Cost Flexibility

Circuit switching High for long messages 1 flit Low Low
SAF High for short and

frequent messages
Packet Low High Low

VCT High Packet High High Low
Wormhole High A few flits Low Low Low
[15] High Low Medium High
[4] High Low High High
[12] High High Low Low Medium
[4] High Very low Low Low High
[5] Very high Very low Low Low High
[13] High Low High Low High
[14] High Low High Low High

3.1.3 Hybrid Switching Techniques

A hybrid packet-circuit switching technique based on space division multiplex-
ing (SDM) was proposed in [13] in order to efficiently handle both streaming and
best-effort traffic generated in real-time applications, accordingly by using a circuit-
switched subrouter with both SDM and TDM, and a packet-switched subrouter.

A similar approach was proposed in [14], demonstrating a 22 % improvement
in power and 45 % improvement in latency over a conventional packet-switched
network.

Table 3.1 compares proposed switching techniques in terms of performance, hard-
ware complexity, buffering, and flexibility.

3.2 Packet Routing

As mentioned briefly in Chap. 1, the routing techniques for on-chip communication
determine the path selected by a packet to reach its destination. It is obvious that
routing is closely linked to the target topology. The first task is to appropriately
and uniquely identify the hardware resources that communicate through the network
(nodes) using an unambiguous naming and addressing scheme. Typical approaches
are:

• By name (e.g. object X )
• By address (e.g. object at destination X ). For example, for up to 8 nodes 3 bits are

required to encode addresses, for up to 16, 4 bits, etc.
• With a group identifier (e.g. all objects related to X ) used to identify a NoC

multicast group

http://dx.doi.org/10.1007/978-1-4614-4274-5_1
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• In mesh and torus topologies, it is easy to address a node by using Cartesian
coordinates (“x”, “y”, and “z” in case of a 3-D NoC)

Routing algorithms can be classified into three main groups, namely:

• Deterministic: the route between source-destination pairs is fixed. This approach
cannot provide solution to dynamic congestion or fault tolerance.
• Adaptive: the path choice between source-destination pairs is dynamic.
• Stochastic: In this approach the cost among different routing paths varies proba-

bilistically.

Similarly, depending on the degree of adaptiveness provided by the routing algo-
rithms, they can be generally classified into three categories:

• A nonadaptive routing algorithm is deterministic and routes a packet from the
source to the destination along a unique, predetermined path.
• A minimal fully adaptive routing algorithm routes all packets through any shortest

paths to the destinations.
• A partially adaptive routing algorithm allows multiple choices for routing packets

via shortest paths, but it does not allow all packets to use any shortest paths.

In terms of implementation, routing algorithms can be implemented by appropri-
ate logic or commonly a routing table is used which is essentially a routing table
containing the routing information for all possible destinations. Another technique
associated with routing calculation is the distinction between source routing and dis-
tributed routing. In source routing, the entire routing path is computed at the source
(typically the NI connected to the source node) and is appended to the packet. The
routers do not make any routing decisions, but simply implement the routing path
based on the information encoded in the packet. On the other hand, in distributed
routing, the routing path is decided in a hop-by-hop basis at each router, even for
deterministic routing algorithms. The only information required to be found in the
packet is the destination address. The advantage of source routing is that it requires
simple routers and can easily support irregular architectures. Its disadvantage is that
it does not provide adaptiveness and requires more complex NIs and packets.

Finally, routing algorithms can be classified according to the target topology
(regular, irregular, hierarchical, etc.).

A desirable feature of a routing algorithm is its freedom from deadlock and live-
lock. Freedom from deadlock is especially critical for NoCs, since the implementa-
tion of a mechanism which automatically detects and recovers from deadlock may
not be affordable in terms of silicon resources; it also may lead to unpredictable
delays.

3.2.1 Deadlock

Deadlock, in general, is the condition that occurs when two processes are each waiting
for the other to finish first, and therefore neither can start. In the network environment,
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deadlock can occur when circular dependencies exist, for example, a packet p1 holds
channel c1 and requests channel c2, which is reserved for packet p2, which in turn
requests channel c3, which is reserved for p3, which requests channel c4 etc. and
finally packet pn requests channel c1, and therefore, all packets stay blocked for
indefinite time, waiting for an event that will never happen. Wormhole switching is
particularly vulnerable to deadlock.

There are two possible solutions to the deadlock problem, namely recovery and
avoidance [16]. Deadlock recovery requires fewer resources and may outperform
avoidance if deadlocks are infrequent but leads to unpredictable delays and is chal-
lenging to implement [17]. Deadlock avoidance generally requires more resources
and may restrict routing flexibility and therefore performance. However, it is usually
the preferred solution due to its ease of implementation.

3.2.1.1 Deadlock Recovery

More specifically, deadlock recovery requires a run-time deadlock detection mech-
anism, supported by a deadlock resolution mechanism. Deadlock detection is chal-
lenging due to the distributed nature of deadlocks. A common approach is to employ
heuristics such as time-out mechanisms [18, 19]. While this approach is certain to
detect all deadlocks, it can also lead to blocked packets falsely flagged as deadlocked.
The reason is that it is difficult to determine the optimal time-out threshold value,
since it is heavily dependent on the network parameters (packet length, network size,
topology etc.) as well as the application characteristics (specific traffic).

Concerning deadlock recovery schemes, they can be classified as regressive or
progressive. A regressive recovery scheme kills the packet flagged as deadlocked
and retransmits it after a time-out [20]. However, retransmission of a packet reduces
performance, and usually a progressive recovery scheme which utilizes additional
hardware to bypass the suspected packets to their destination [18] is preferred.

In [21], deadlocks are detected using a runtime transitive closure computation
scheme to discover the existence of deadlock-equivalence sets, which imply loops of
requests. This detection scheme significantly reduces the number of false positives.

3.2.1.2 Deadlock Avoidance

Deadlock avoidance requires proof that the NoC routing scheme is deadlock-free.
A necessary and sufficient condition for deadlock-free routing algorithms was intro-
duced in [11], and it is essentially the absence of cyclic dependencies in the resources
required by the switching technique and routing algorithm. Therefore, deadlock
avoidance is achieved by ensuring that the routing algorithm selected satisfies the
above condition. In order to analyze the possible dependencies that can lead to cyclic
dependencies and to deadlock, a resource dependency graph can be used. It is a
directed graph where nodes are agents and resources and the arcs are either hold
or wait-for relations that lead from an agent to a resource. In other words, an agent
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Fig. 3.6 Resource dependency graph with (a) hold and wait-for relations and (b) wait-for relations
only

either occupies (holds) or waits for a resource in the network to become available.
Agents correspond to connections in circuit switching, packets in SAF switching and
in flits in wormhole switching. Therefore the deadlock condition described earlier
would correspond to the resource dependency graph of Fig. 3.6a. Hold relations are
denoted with the dashed line while wait-for relations are denoted with a continuous
line. Hold relations can be replaced by equivalent wait-for relations of the opposite
direction, since an agent holding a resource is equivalent to a resource waiting for an
agent to release it. This leads to the wait-for resource dependency graph of Fig. 3.6b.
It can be seen that the graph is cyclic, which is a necessary condition for deadlock.

A cyclic resource dependency graph can be transformed to an acyclic one by
simply adding more resources. This is a common approach for ensuring freedom
from deadlock in case an algorithms is not proven deadlock-free. Another approach
is to prohibit certain turns [22, 23] which comes at some performance penalty due
to the routing restrictions, and is also not applicable to irregular architectures.
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3.2.2 Livelock

Livelock is the situation where a flit or packet is perpetually deflected and, even
though not blocked, never reaches its destination either. It can happen in routing
algorithms that allow deflection of a packet (such as hot potato routing), and these
algorithms must therefore ensure by some mechanism that all packets eventually
reach their destination. There are two basic categories of livelock-free algorithms,
namely deterministically livelock-free and probabilistically livelock-free. The former
are based on adding to each packet additional information used to prioritize pack-
ets and not deflect the higher priority ones. Typical metrics used are age, number
of deflections, etc. Probabilistically, livelock-free algorithms are based on ensuring
that as time approaches infinity the probability of a packet reaching its destination
approaches one, meaning that the packet will eventually reach its destination. How-
ever, the designer must also ensure that the selected solution satisfies performance
constraints, as “eventually” may be unacceptably long, and is also unpredictable.

3.2.3 Routing Algorithms for Regular Architectures

Regular architectures are the most commonly used ones, and therefore a number
of routing algorithms have been proposed, particularly for the highly popular mesh
topology.

Regarding mesh topologies, it is very easy to accomplish a shortest path deter-
ministic routing with reasonable area penalty, by employing a simple variation of
dimension order routing [24] such as XY (or XY Z for 3-D NoCs). XY routing
ensures deadlock and livelock freedom, but it provides no adaptiveness. This algo-
rithm is a tableless routing technique whereby each packet is routed first in the X
direction and after it reaches the same X as the destination address, similarly moves
along the perpendicular dimension(s). Such a routing approach provides a number of
advantages over alternative implementations. Among others, (i) it is shortest path, and
hence minimizes the energy spent per information unit transfer, and (ii) it requires a
reduced number of gates as compared to routing table-based or source-route schemes.

A number of shortest path, deadlock-free, partially adaptive routing algorithms
are based on restricting certain turns as mentioned in Sect. 3.2.1. These are West-
first, North-last, and Negative-first. As their names imply, West-first requires that a
packet is routed to the west direction first, if it is a productive direction, otherwise any
shortest path can be taken. Similarly, North-last requires that if north is a productive
direction, to be taken last, while negative first requires that. All these schemes imply
that certain turns are prohibited as shown in Fig. 3.7 together with an example of
possible routing paths using the above schemes.

As can be seen in Fig. 3.7a, XY routing, by restricting four turns becomes com-
pletely deterministic. The partially adaptive routing algorithms restrict only two
turns. West first, by requiring that the west direction is taken first if required, allows
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Fig. 3.7 XY and partially adaptive mesh routing algorithm turn model

all possible shortest path when a packet has to travel eastward, but only one possi-
ble path when traveling westward (Fig. 3.7b), clearly favoring traffic toward the east
direction. Likewise, North-first (Fig. 3.7c) by demanding that traffic going toward
the north takes the north direction last, allows all possible shortest paths for traffic
going toward the south but again, only a single path for traffic going north. Clearly,
this algorithm favors traffic going from north to south. Finally, negative-first requires
that in case the packet destination is toward any negative axis, horizontal or vertical,
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along with any other direction, then the packet should be routed first toward that
negative axis direction and afterward toward the other direction. All these schemes
imply that certain turns are prohibited as shown in Fig. 3.7 together with an example
of possible routing paths using the above schemes.

As mentioned, the above partially adaptive schemes, only allow multiple routes
in a subset of source-destination pairs. A different approach for a partially adaptive,
deadlock-free routing algorithm targeting to meshes is presented in [23]. Unlike the
implementations which rely on prohibiting certain turns in order to achieve deadlock
freedom, this approach restricts the locations where some types of turns can be
taken. Also, a deterministic routing methodology for high performance without the
use of virtual channels, targeting (but not limited) to torus and mesh topologies,
is described in [25]. This algorithm, named Segment-based Routing, is based on
partitioning a topology into subnets, and then subnets into segments. This allows
placing bidirectional turn restrictions locally within a segment, which leads to a
larger degree of freedom as compared to similar routing strategies.

A routing algorithm named DyAD, which combines the advantages of both deter-
ministic and adaptive routing schemes, is presented in [15]. This approach is based on
the current network congestion since each router in the network continuously mon-
itors its local network load and makes decisions based on this information. When
the network is not congested, the DyAD router works in a deterministic mode, thus
enjoying the low routing latency enabled by deterministic routing. On the contrary,
when the network becomes congested, the DyAD router switches back to the adaptive
routing mode, and thus avoids the congested links by exploiting other routing paths
(this result to higher network throughput which is highly desirable for applications
implemented using the NoC approach).

Adding virtual channels allows the design of highly adaptive routing algorithms.
In fact, it is impossible to produce a deadlock-free fully adaptive routing algorithm
for a mesh without addition of virtual channels [26]. However, adding virtual chan-
nels to meshes is not free. It involves adding buffer space and complex control
logic to routers, thus communication performance of the network and reliability
of the routers may be affected. In [27], the authors propose a routing algorithm that
achieves deadlock-free, minimal, and adaptive layered routing using virtual channels
for regular (k-ary n-cubes) networks. However, we have to take into consideration a
limitation of this approach, since the need for virtual channels grows exponentially
with n.

Regarding torus topologies, the straightforward routing approach is a modification
of XY or XY Z routing that takes into account the wraparound links. It is fairly simple
for a router or NI to calculate whether the shortest path is through a wraparound link
or not, based on the packet destination address. However, this approach requires
more calculations than mesh topology XY routing, or using a routing table. In [28],
the authors propose a different encoding for the nodes in a torus topology based
on Johnson coding [29] which implies the relation among neighboring nodes and
the global information of routing, allowing route calculation with three to six logic
operations.
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3.2.4 Routing Algorithms for Irregular Architectures

The previously discussed routing algorithms exhibit two major drawbacks when
applied in real life NoC architectures. More specifically, some of them (i.e., the
XY routing) favor specific paths of NoC architecture, which might be over utilized,
whereas some other parts of the device might be under-utilized. Additionally, the
existing VLSI layouts are irregular (due to modules’ shape and size variability in
VLSI layouts), and hence a mesh topology cannot be applied without significant
modifications.

In order to alleviate the limitation of shortest turn-based routing algorithms, a
number of alternative implementations were studied. In [30], multiple instantiations
of shortest path XY routing are examined for a SoC-based NoC with an irregular mesh
topology. Since the considered algorithms are static shortest path schemes, which all
have equal link power dissipation, the comparative metric is the total implementation
gate-count.

A deadlock-free routing algorithm targeting to irregular topologies, called Layered
Routing, is presented in [31]. This approach groups virtual channels into network
layers and to each layer it assigns a limited set of source/destination address pairs.
Such a separation of traffic yields a significant increase in routing efficiency, as it
achieves load balancing and guaranteeing shortest path routing, without requiring
any features in the switches other than the existence of a modest number of virtual
channels.

The issue of efficient routing in irregular networks was initially addressed in
[32, 33], where a source routing method guarantees that messages always use shortest
paths. This algorithm attempts to alleviate the restrictions imposed by up*/down*
routing by letting intermediate nodes eject messages completely and later re-inject
them, breaking the dependencies of illegal turns. In [34], the same idea was used in an
InfiniBand setting, but here letting the packets that use these turns ascend to a higher
layer of virtual channels broke illegal turns. Another approach is based on providing
a routing with layers. More specifically, based on this approach packets escape from
possible deadlocks in a higher layer by making a transition down to a lower level. If
the lowest layer is deadlock-free, the entire system will also be [35–39].

In order to support NoC architectures with irregular (i.e., non mesh) topologies,
both source routing and distributed routing have been employed. As mentioned,
regarding the source routing, each flit carries a sequence of routing instructions,
whereas in the distributed routing the destination is looked up at each intermediate
router. In general, both SR and DR make extensive use of routing tables. Regarding the
SR, the tables are located at each source (they are also indexed by packet destination
addresses, but they contain sequences of routing commands, one for each hop along
the routing path), while at the DR approach the routing tables are located at each
router (they are indexed by the packet destination address and contain output port
values). Usually, the routing table implementations have as many entries as there are
nodes in the network. However, such a communication scenario, where any node can
communicate to any other node is very unlikely to happen, since the actual set of
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destinations used at each source is typically a small fraction of the number of nodes.
However, even for these architectures with limited routing info, the area overhead of
routing tables usually is not negligible. Consequently, an important factor to optimize
in such routing schemes is the overall size of routing tables. Up to now, a number of
different approaches have been discussed in order to achieve area savings. Among
others are reduced-size ROM and Boolean logic implementations. Two techniques
for further optimization of the cost of both SR and DR routing algorithms, named XY -
Deviation Table (XYDT) Routing and Source Routing for Deviation-Points (SRDP),
are presented in [30]. The performance of irregular networks can further improved
by employing methods, such as virtual channel multiplexing, adaptivity, and shortest
path routing combined with escape paths [40–42].

Further research in this area should address not only missing nodes in the mesh
topology, but also the insertion of long serial router-to-router wires, which bypass
intermediate routers [43]. Such long wires can reduce the power dissipation of long
distance traffic, since the communication cost over a wire does not increase linearly
with its length (see Sect. 3.5).

The previously discussed algorithms can perform without problems when the
target applications, as well as their behavior are known at priori. However, NoC
architectures often have to support dynamic applications with real-time constraints.
A typical approach takes traffic information into account in order to reduce power
consumption [44, 45].

3.2.5 Topology-Agnostic Routing Algorithms

A limitation of the routing algorithms mentioned in the previous sections is that
they are sensitive to topology changes (i.e., a faulty switch or link will degrade the
topology into an irregular one and then the algorithms will fail). To overcome this
limitation, a topology-agnostic routing algorithm can be used. Increasingly unreliable
technology nodes have led to an increase in interest for topology-agnostic algorithms.
Several high performance topology- agnostic routing algorithms for interconnection
networks exist, such as Layered Shortest Path (LASH) [46], Transition Oriented
Routing (TOR) [34], their combination called LASH-TOR [47], the Descending
Layers (DL) algorithm [48], and multiple virtual networks [49]. Common for all
these algorithms are that they require virtual channels, a feature that not all technolo-
gies support. In fact, some topology-agnostic routing algorithms require increasing
number of VCs as the size of the network grows [50], making them prohibitive for
the NoC environment. Furthermore, if virtual channels happen to be supported the
number of available channels is often limited, and often dedicated to certain pur-
poses such as quality of service. There are, however, also topology-agnostic routing
algorithms that do not rely on virtual channels (up/down [51], DFS [52], FX [49]).

The most prominent algorithm example is the up*/down* [51] routing algorithm,
which is based on turn restrictions. This algorithm relies on generating a breadth-first
spanning tree of the network, and then a direction to each link (either up or down)
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is assigned. It was first presented in connection with Autonet [53] and later used in
Myrinet [54]. This routing algorithm restricts turns by applying the up*/down* rule
[51] according to which a packet may never traverse a link in the up direction after
having traversed one in the down direction. Authors in [52] propose an improved
up*/down* routing scheme, where instead of using the usual breadth-first traversal in
the generation of the spanning tree, a depth-first search that optimizes the spanning
tree is applied. This modification gives greater flexibility during the generation of
the routing tables, and therefore leads to improved performance.

Since the up*/down* routing approach uses bidirectional turn restrictions, a
methodology which avoids deadlock by prohibiting a subset of all turns in the net-
work, it may cause an uneven distribution of traffic by having many paths crossing
the same link, which results in lower performance. Also, this approach is unable to
guarantee shortest path routing and unable to exploit any regularity in the underly-
ing topology. A solution to this problem is tried by the FX routing scheme, which
improves also the performance by introducing unidirectional routing restrictions
[49].

In [50], topology-agnostic routing algorithms are evaluated for a variety of sce-
narios including regular mesh and torus topologies and regular topologies with 1, 3,
and 5 % failures.

3.2.6 Bufferless Routing Algorithms

Apart from routing approaches that based on storing temporally packets inside
switches, there are also approaches where buffers are removed completely. There
are two approaches in bufferless routing algorithms. Packet dropping and retrans-
mission [55, 56] and “hot potato” or deflection routing, first introduced in [57]. The
fundamental idea behind hot potato routing is to route all incoming packets (or flits)
to an output port of the router, regardless of whether or not that output port results
in a lower distance to the destination of the packet. Since it is not always possible to
route all packets to an output port that reduces the distance to the destination node
(called a productive direction) as it may be already allocated to another packet, it is
possible for packets to be deflected or “misrouted” [58]. The output port allocation in
deflection-based bufferless NoC architecture are based on flit priority ratings. These
can be: furthest to go, nearest to go, time of creations (age), time of departure (age),
as well as user defined priorities.

In [58], a set of simple and practical bufferless routing algorithms, applicable to
almost any NoC topology, is evaluated against baseline buffered algorithms. Based on
the results shown in this chapter, bufferless routing can yield substantial reductions in
energy consumption, while incurring little extra latency (versus buffered algorithms)
if the average injected traffic into the network is low, i.e., below the network saturation
point.

An important issue with bufferless routing algorithms is that flits in a packet may
arrive out of order due to deflections leading to different paths for each flit with
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Table 3.2 Routing algorithm comparison

Algorithm Flexibility Minimal Buffering Topology Design
Complexity

XY/XYZ Deterministic Yes Yes Mesh Low
Turn model ([22]) Partially adaptive Yes No Regular Low
DyAD ([15]) Deterministic/adaptive Yes Yes Regular Medium

hybrid
up/down ([51]) Adaptive No Yes Irregular Low
[27] Adaptive No Yes Regular Medium
[31] Deterministic/adaptive Yes Yes Irregular
[59] Deterministic Yes Yes Regular (torus) Low
[32] Deterministic after Yes Yes Irregular Low

initialization
[44] Adaptive Yes Yes Agnostic Medium
[45] Partially Adaptive Yes Yes Irregular Low
LASH ([47]) Partially Adaptive Yes Yes Irregular Low
[49] Partially Adaptive No Yes Irregular medium
[58] Adaptive No No Regular High

no intermediate storage. Solving this issue requires flit reordering at the destination
(reassembly buffers).

3.2.7 Routing Algorithm Comparison

It is obvious that no routing algorithm is suitable for every application and topology.
In this section, there is an attempt at classification and qualitative comparison of the
routing algorithms mentioned in the previous sections (Table 3.2).

3.3 QoS, Congestion Control and Flow Control

It is common in real-life applications to be hard or soft time constraints (deadlines),
which need to be met for proper application execution. The guarantee of these tim-
ing constraints is usually addressed as Quality of Service (QoS), which is another
important design issue in NoC architectures [60]. Quality-of-Service (QoS) guar-
antees independent design and validation of every part of the SoC by ensuring that
real-time application requirements are met under any circumstances [61]. Typical
examples of time-related guarantees are the throughput guarantees, as well as the
latency bounds.

Since the NoC architecture is essentially a shared medium, contention protocols
are used to decide how the bandwidth will be allocated to demand. If it is handled
inefficiently, congestion may occur, a condition in which buffers overrun, packets
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are dropped and QoS degrades. Flow control generally refers to the policies that
allocate resources to packets, and can be seen as a resource allocation or contention
resolution problem [16]. It can be either centralized meaning a central controller
makes the decisions or distributed meaning that each router makes decisions. The
latter is the most common approach in NoCs.

3.3.1 Flow Control

Flow control can be intra-switch, switch to switch and end to end, though the term
most commonly refers to switch-to-switch flow control. In this section, we exam-
ine switch-to-switch flow control, while end-to-end flow control is discussed in
Chap. 5. Switch-to-switch flow control schemes can be classified into bufferless and
buffered flow control. In bufferless flow control, the packets are deflected if required
as described in the section on bufferless routing algorithms.

A simple buffered flow control protocol used in NoCs is acknowledged/not
acknowledged (ACK/NACK) [62]. The ACK/NACK approach is basically a hand-
shaking protocol [29]. When a sender puts data on the link, it activates a VALID
signal. When the receiver is ready to consume the valid data, it activates the cor-
responding ACK signal. If the data are corrupt or there is no buffer space to store
them, a NACK signal is activated instead. Upon receipt of a NACK, the sender starts
resending flits starting from the not acknowledged one (Fig. 3.8). This flow con-
trol scheme has the advantage that it inherently supports fault tolerance, while its
main disadvantage is the additional buffer space required to keep sent flits in case
retransmission is required.

Other similar handshake-based protocols have been used for flow control such
as the flow control mechanism NoCGEN which uses a request, grant, and ready
handshake [63]. Similarly, in the flow control in the SoCIN NoC architecture [64],

TX RX

FLIT

VALID

ACK/NACK

FLIT
ACK/NACK

VALID
CLK

(b)

(a)

Fig. 3.8 ACK/NACK flow control (a) signals and (b) timing diagram. (Note retransmission of
Flit2)

http://dx.doi.org/10.1007/978-1-4614-4274-5_5
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when a sender puts data on the link, it activates the related VALID signal. When the
receiver is ready to consume the validated data, it activates the corresponding ACK
signal.

ON/OFF [16] is another simple protocol and STALL/GO its most common imple-
mentation in the NoC environment. It requires just two control wires: one going
forward, signifying data availability, and one going backward and signaling either a
condition of buffers filled (“STALL”) or of buffers free (“GO”) (Fig. 3.9).

T-Error [65] is a much more complex protocol aiming at improving performance.
In credit-based flow control [16], the transmitter has a “credit” counter that is ini-
tialized to the value of empty buffer slots of the receiver and decrements it every
time a flit is sent. The credit counter must be updated in case the receiver consumes
or forwards a flit and therefore increases its buffer space. This is accomplished by
a credit value that is sent back to the transmitter to be added to the current value of
the credit counter. The transmitter stalls when the credit value is zero and resumes
when its value increases again. The signals and timing diagram of a credit-based
flow control scheme are shown in Fig. 3.10. Both handshake- and credit-based flow
control are supported in the revised SoCIN architecture called ParIs [66].

Table 3.3 compares the above flow-control schemes in terms of performance,
buffering requirements, logic requirements, and fault tolerance support.

A more detailed evaluation of the above flow-control schemes is presented in [67].

TX RX

FLIT

REQ

STALL/GO

(a)

(b)

Fig. 3.9 STALL/GO flow control signals

Table 3.3 Flow control comparison

Flow control Performance Buffering Logic Fault tolerance

ACK/NACK High for long messages Very low Low Low
STALL/GO Medium High Low High
Credit-based High High Low High
T-error High High Low Low
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counter
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Fig. 3.10 Credit-based flow control (a) signals and (b) timing diagram

3.3.2 Quality of Service (QoS)

Unlike computer networks that are built for ongoing expansion, future growth and
standards compatibility, on-chip networks are designed and customized for a priori
known set of computing resources and precharacterized traffic patterns among them.
Consequently, various design parameters of the network architecture (i.e., buffer
size, link bandwidth allocation, etc) can be tuned for specific applications in order
to provide a required QoS (for known traffic patterns). Typical approaches to QoS in
NoC architectures are best effort QoS and guaranteed services QoS.

3.3.2.1 Best Effort QoS

Best Effort (BE) services do not reserve any resources, and hence provide no guar-
antees while it also leads to smaller delay. Even though this approach uses fewer
resources, it results in quite efficient network communication since this kind of ser-
vice is typically designed for average-case scenarios instead of worst-case scenarios.
However, its limitation lies in its unpredictability.

3.3.2.2 Guaranteed Services QoS

NoCs with guaranteed services take provisions in their architectures to offer con-
nections with guaranteed performance, such as the absence of data loss, minimum
throughput, and maximum latency. Examples are [24, 68, 69], using packet switching
with time-division-multiple-access (TDMA) schemes and [1, 4] using pure circuit
switching.
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3.4 Router Design

In this section, the design of each module of a generic (often termed baseline or con-
ventional) NoC router is detailed first and modifications and improvements proposed
in the literature are discussed later. Further examples on router design are given in
the NoC case studies examined in the second part of the book.

It is obvious that router design is closely related to all NoC parameters discussed
so far, namely architecture, routing algorithm, switching technique, flow control,
and QoS. This implies that there is a variety of possible router implementations.
Router architectures have dominated early NoC research, and the first NoC designs
[8, 9] proposed the use of simplistic routers, with deterministic routing algorithms.
Gradually, researchers have explored the impact of various design parameters such
as:

• number of ports (radix): This is typically equal to three for octagon topologies, five
for 2D mesh and torus topologies, seven for 3D mesh topologies, and any number
for irregular topologies. Generally, routers do not scale well with the number of
ports as will be discussed extensively in a following section.
• link word-length (phit size): The number of parallel lines in each router link.

Typically, this is common for all router ports. Typically, routers do scale well with
phit size.
• buffer placement and organization : Common approaches are input queueing,

output queueing, both, no queuing (bufferless routing), and using VCs.
• buffer size : The number of flits stored in the router. Buffers are costly in terms

of area and power consumption, therefore only a few flits are stored typically.
However, NoCs with little buffering may feature degraded performance under
heavy traffic conditions.

The input/output of a typical router includes the following types of signals:

• global control signals: Clock and reset inputs for typical synchronous routers.
• data signals: Inputs and outputs used to transmit data. Equal to phit size.
• flow control signals: DATA VALID, REQ, ACK/NACK, STALL/GO, or credits

signals depending on the flow-control protocol. In bufferless routing only a data
valid signal is required.

In terms of RTL design, since the router is a component that is very likely to be used
in future versions of the system, and its architecture options may be either revised or
even different instances may coexist in the same architecture (heterogeneous NoCs),
it should be designed as a reusable IP block [70]. The parameters mentioned above
should be configurable through a package or include file, and the router should be
verified for a number of values of these parameters.

A detailed block diagram of a typical 5-port switch/router is shown in Fig. 3.11.
The ports of a 5-port mesh/torus router are commonly designated as North, South,
East, West, and Local or PE for the local node. In other topologies ports are simply
numbered. The basic router components are:
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Fig. 3.11 Generic NoC router block diagram

1. the input/output buffers which temporarily store flits,
2. the output port allocation logic which selects the output port for each flit/packet,
3. the switch fabric which makes the physical connection from input to output port,

and
4. the control logic responsible for overall synchronization.

During typical router operation, an incoming flit is first successfully received and
possibly stored in the input queue. Second, the output port request for the incoming flit
is determined based on the flit destination address according to the routing algorithm.
Third, the output port allocator receives the flit requests and allocates the output ports
according to priority. Finally, as soon as a flit is granted a port it is wired through the
switch fabric to the granted output port or queue finally is transmitted through the
link to the neighboring router or node.

Because of the tight performance, area and power constraints of many MPSoC
applications, careful analysis, and design of all router components are important. Typ-
ical performance metrics for routers are operating clock frequency and throughput.
Generally, it is not feasible to increase clock frequency by adding pipeline stages, as it
is common in other digital systems, since low latency is important in NoC also. Addi-
tional metrics used to compare/evaluate router implementations are power-delay and
power-delay-fault products, also taking into account power consumption and fault
tolerance, respectively.
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3.4.1 Buffers

Buffers are the greatest power consumers. Thus, efficient buffer design is critical
for achieving a good performance/area/power trade-off. To minimize the implemen-
tation cost, the on-chip network has to be implemented with little area overhead.
Thus, unlike off-chip networks which feature large memories, ofter DRAMs, NoCs
typically use small registers for buffering. Another advantage of using registers over
large memories is that the address decoding/encoding latency and the access latency
can be significantly reduced. This is critical for those latency sensitive applications
that are typical for many SoCs.

Buffer design can be broken down to sizing and organization. Buffer sizing is
important since the area occupied by an on-chip router is dominated by the buffers
[8, 71], while these buffers are the largest leakage power consumers in a NoC router,
consuming about 64 % of the total router leakage power [72]. In addition to that,
buffers consume significant dynamic power while this consumption increases rapidly
as packet flow throughput increases [73]. Previous studies have shown that storing
a packet in a buffer consumes far more energy than transmitting the packet [73].
However, decreasing buffer size in order to save power consumption and silicon
area often is not a viable solution, since it also results in network performance
degradation, especially under heavy traffic [58]. This is why good buffer organization
is important. The fact that buffers are the major power consumers in NoCs has led the
scientific community to focus on buffer design and optimization. A disadvantage of
the ACK/NACK flow-control scheme is that it requires additional buffering in order
to maintain a copy of the transmitted flit in case retransmission is required.

Buffer design for virtual channels requires multiplexers/demultiplexers in the
input ports of the router as shown in Fig. 3.12. The de-multiplexer assigns the appro-
priate queue based on the Virtual Channel ID in the packet. In this distributed, private
buffer implementation, even though increasing the number of VCs improves perfor-
mance, increasing the number of buffers accordingly quickly leads to unacceptable
power consumption. Therefore, buffer sharing schemes between VCs have been pro-
posed [74].

Buffer organization in early NoC implementations was limited to input-output
queueing [75], which means that the router stored incoming or outgoing traffic,
respectively. Each input-output port had its own private buffers. However, since then
various attempts at buffer organization were proposed. In regular topologies, usually
all routers and ports within a router have the same buffer size. Still optimal buffer
size and number of VCs needs to be determined. In custom irregular architectures
though, each router and port buffer size can be tuned according to the application
traffic requirements. Due to the impact of buffers in the router power consumption
and performance, buffer organization/allocation has been given the greatest attention
by the research community. Approaches are broadly classified as software based and
hardware based for convenience in the next two sections, they are however, based on
one of the following strategies:
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Fig. 3.12 Virtual Channel distributed buffer organization with M virtual channels

1. Static approaches [76, 77]: Optimal buffer organization is determined at design
time using traffic information. The hardware is usually based on configurable
baseline routers. This approach, though optimal for a specific application, is not
general and therefore lacks flexibility.

2. Run-time buffer allocation or centralized buffer [74, 78–80]: Centralized/shared
buffers that are allocated dynamically to VCs according to real-time traffic
requirements.

3. Buffer bypassing [81]: Reducing buffer sizing together with flit storing on the
links in order to bypass router buffers as much as possible.

4. Deflection routing [58, 82]: Reducing buffer size or eliminating buffers com-
pletely by miss-routing (deflecting) incoming packets.



www.manaraa.com

3.4 Router Design 75

3.4.1.1 Software-Based Solutions

Previous studies show that nonoptimal design/usage of buffers may result rather than
having an efficient network (a network is assumed efficient when it occupies at least
the 80 % of its theoretical capacity), to implement a network policy with about 30 %
capacitance utilization [83]. The buffer optimization can also improve the area of
NoC. The work in [84] analyzes the properties of on-chip buffers and reports gate-
level area estimates and buffer utilization across the network. A similar approach is
discussed in [85], where the impact of FIFO sizing on the interconnect throughput
for single-source, single-sink interconnect scenarios is discussed.

An iterative methodology for assigning buffer space for structured NoC architec-
tures with grid topology is described in [71, 86]. This methodology initially assigns
to all the network buffers a depth of “1” and then by using appropriately selected
sophisticated queuing models for routers, it determines the most likely channel to
become congested. This likelihood is expressed as a function of the architectural
(e.g., network topology, packet service time at routers, etc.) and application-specific
(e.g., injection rate at each IP, probability distribution of packet destinations, etc.)
parameters. Then, the buffer size increased for buffers connected to the most con-
gested channels of NoC. This procedure is repeated until the total buffering space
is used up. A similar work is discussed in [87], where a NoC cost minimization
process by exploring the influence of increasing the number of wormhole buffers
versus decreasing link bandwidth (by reducing the number of wires), is presented.

Another approach, as mentioned in the section on bufferless routing, is reducing
the size of buffers or eliminating them completely by appropriate deflection routing
or even packet dropping.

3.4.1.2 Hardware-Based Solutions

Centralized buffer organizations have been studied extensively in the macronetwork
realm, but the solutions proposed are not amenable to resource constrained on-chip
implementations. During the last years, buffer sizing has been investigated in [71].
However, these works adopt a static approach, where optimal buffer sizes are pre-
determined at design time based on a detailed analysis of application-specific traffic
patterns. Such an approach results to an application-specific solution, which is also
optimized for a specific hardware mapping. A more advanced solution involves
architectures that incorporate techniques to dynamically alter the buffer organization
at run-time, since it is more desirable for general purpose and reconfigurable SoC
executing different workloads.

In particular, a unified and dynamically allocated buffer structure was originally
presented in [88] in the form of the Dynamically Allocated Multi-Queue (DAMQ)
buffer. The DAMQ project spawned a few other designs, which aimed to simplify the
hardware implementation and lower overall complexity. Two notable instantiations
of these designs were the DAMQ with self-compacting buffers [78] and [74], which
aims at area and power constrained, ultra low latency on-chip communication.
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Also using repeaters in inter-router channels as buffers along the channel when
required has been proposed [81].

Apart from this design approach, where buffers are used in order to store incom-
ing (or outgoing) traffic, there are implementations that perform packet switching
with very limited buffering. More specifically, the output switches in the Nostrum
NoC [69] under normal operation conditions try to send packets to the direction of
their destination. However, if the corresponding output link is blocked by another
packet, then the packet is deflected into another direction and effectively moved away
from its destination. In other words, switches in Nostrum do not temporarily store
packets, and therefore they have no internal buffers (they only have an input and an
output buffer for each link). Next we try to point out the main features of achieving
traffic or communication scheduling through appropriate buffer sizing in software
and hardware levels.

3.4.2 Switch Fabric

Essentially, the switch fabric multiplexes all inputs to each of the outputs. The
straightforward approach to the switch fabric is implementing a crossbar (also known
as a matrix) connecting each input queue output to any of the queue outputs depend-
ing on the grant signals provided by the output port allocation logic. There are two
common implementations of crossbar switches, using pass transistors and using mul-
tiplexers (Fig. 3.13). The pass transistor implementation exhibits reduced area and
power consumption, while the multiplexer implementation has the advantage that
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Fig. 3.13 Crossbar implementation with (a) pass transistors, (b) multiplexers
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can be automatically synthesized from an RTL description and can be used in FPGA
devices also.

In theory, crosssbar area grows with the square of the number of ports, and indeed
automatic placement and routing using EDA tools leads to prohibitive area above 32
ports [75]. It has been shown, however, that with carefully tuned placement, taking
into account the regularity of the design, even 128 tiles can be connected using a
single 128×128 crossbar occupying a mere 6 % of the total area [89].

In order to reduce the complexity of the 5×5 crossbar, a row-column decoupled
router architecture was proposed in [90]. The typical 5×5 crossbar is replaced by a
pair of 2×2 crossbars (one for row-mode or East-West routing and one for column-
mode or North-South routing) and an ejection multiplexer for the local PE.

3.4.3 Port Allocation

The output port allocator is basically a scheduler that receives requests from incoming
flits or flits pending in the input buffers and grants the output port according to a
scheduling policy. It must efficiently arbitrate among flits for the same output port
and among flits from different virtual channels for the same output channel.

More formally, an allocator performs a matching between resources (output ports
and/or physical channels) and requesters (flits pending for transmission) according to
two basic constraints: (i) Resources are only granted to requesters if a corresponding
request exists and (ii) at most one resource is assigned to each requester and vice
versa.

Possible scheduling policies are:

• Round-robin: Most widely used [75, 91, 92] because it is fair and prevents starva-
tion. Typically implemented using a ring counter token and priority encoder-based
arbiters as shown in Fig. 3.14.
• Pseudo-LRU: A scheduling policy that is biased toward flits that have not been

granted output lately. It was implemented in [93, 94], with good results.
• Fixed priority: Not commonly used because it is unfair and can cause starvation.

It can be useful in custom topologies where the designer desires a peripheral to
always have priority over another. Certain router implementations give priority to
flits requesting to move in the same direction over flits requesting to turn.

A basic round-robin port allocator is shown in Fig. 3.14. The ring counter is used
to produce the round-robin token. It is initialized to a value containing a single logic
“1” and it counts each time a flit is transmitted, by using the VALID, GO, or ACK
signal as a count enable depending on the flow control scheme used. The arbiter
blocks are priority encoders with decoded outputs as shown in the truth table of
Fig. 3.14. The token produced by the ring counter is used to enable only one of the
arbiters each time, giving priority to a different request each time in a round-robin
manner.
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Fig. 3.14 Round-robin output port allocator detailed diagram

High-radix arbiters impose significant latency and area comparable to the switch
fabric. Therefore, in the case of multiple virtual channels, two-stage arbitration is
preferred [16]. In the first stage, a output virtual channel is assigned to the outgoing
packet (VC allocation) and in the second stage the physical channel is granted to one
virtual channel (switch allocation).

A different approach is the wavefront allocator [95] implemented in [96] which
uses a regular array of tiles leading to linear delay and quadratic area scaling. In [97],
the symmetric structure of the round-robin scheduler is exploited to produce an area-
efficient design by folding the scheduler onto itself, reducing its area roughly by 50 %.
In [90], early ejection of flits whose destination is the local PE (without going through
the switch fabric), reduces the size and number of the required arbiters. In [98], a
pessimistic mechanism for speculative port allocation was proposed that reduces
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switch allocator delay by up to 23 % compared to a conventional implementation
without increasing the router’s zero-load latency.

3.4.4 Bufferless Router Design

Eliminating buffers altogether is not straightforward and imposes a number of modi-
fications to the baseline router described in the previous sections. The block diagram
of a bufferless router is shown in Fig. 3.15. First of all, due to the lack of buffers,
no flow control signals exist. Second, eliminating livelock requires sorting incoming
flits according to some priority metric, such as the number of previous hops.

More specifically, as shown in Fig. 3.15 incoming flits are prioritized (sorted)
through the sorting network based on the selected metric. After the flits are sorted
by priority, the routing information (typically comparison of local address and flit
destination address) is used to generate the prioritized output port requests that are
fed into the output port allocator.

As shown, bufferless router implementation entails two inherent complexities
not present in buffered routers. First, the sorting network which is composed of
magnitude comparators and multiplexers. Second, the output port allocator must
allocate a resource (output port) to all requests, based on their priority. Therefore
the highest priority flit is granted the requested output port, which is then eliminated
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Fig. 3.15 Bufferless router block diagram
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from the list of available resources. The second highest priority flit gets the most
desirable (productive) output port from the remaining ones and so on. In the case,
the router must forward flits from all directions, all output ports must be assigned, and
therefore the lowest priority flit will be left with the last remaining output port. This
inherently serial nature of the sorting network and output port allocator combines to
a long critical path responsible for the lower clock frequency or higher latency of
bufferless routers in comparison to buffered ones.

The router proposed in [99] efficiently resolves both complexities imposed by
the baseline bufferless router by replacing the sorting, allocation, and crossbar by a
permutation network and only ensuring that the highest priority packet is granted its
requested port. This has some impact on routing efficiency but still ensures livelock
freedom.

In [82], a minimally buffered deflection router was proposed. It uses a small “side
buffer” to briefly store some network traffic that would have otherwise been deflected
to reduce deflections. Results show performance that approaches the conventional
input-buffered router with area and power close to that of a bufferless router.

3.4.5 3-D NoC Router Design

The straightforward extension of a NoC router for a 2D mesh topology to the third
dimension is to add two more ports, one for the layer above and one for the layer
below, increasing its radix to seven, as shown in Fig. 3.16. Typically, the two addi-
tional ports of this type of router are designated as UP and DOWN. This implies
extending the switch fabric to 7×7 as well as the buffers, and port allocators.

The advantage of such a baseline 3D router is its simplicity. However, since
routers do not generally scale well with the number of ports in terms of area due to
the quadratic growth of the crossbar (see also next section), a baseline 3D router can
be significantly larger than a 2D router [100]. Furthermore, the inherent symmetry of
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this design treats horizontal and vertical links as similar. However, the short vertical
links make traversing all layers in the 3D chip feasible in a single hop [100], while
using baseline 3D routers imposes one hop from one layer to the next. Moreover, it
ignores possible different design constraints between layers. Furthermore, process
variations across layers in 3D ICs can cause much more pronounced differences in
delay among identical routers than in conventional 2D ICs [100]. Lastly, TSV pads
required for the vertical links occupy significant chip area and in large numbers they
can have a negative effect on the yield of 3D IC [101].

For the above reasons, 3D NoC router architectures that deviate from the symmet-
rical NoC router were explored in order to take into advantage the inherent asymmetry
of the vertical links. In [102], a NoC-bus hybrid architecture was proposed. The bus
link was used in the vertical dimension in order to take advantage of the fast vertical
links. This allows single hop data transfer in the third dimension and the additional
benefit of only a 6 × 6 crossbar, since the bus requires one additional port to the
generic 2D 5 × 5 crossbar instead of two (Fig. 3.17). However, flits from differ-
ent layers wishing to move up/down now have to arbitrate for access to the shared
medium. This limits bandwidth between layers which may be unacceptable in many
applications. An improved 3D NoC-Bus Hybrid [103] based on bypassing the router
when the flit travels in the vertical dimension (according to a rule called the Last Z
rule), enables better optimization of the inter-layer communication architecture and
leads to 5× 6 size routers.

Another approach is decoupling inter-layer and intra-layer communication. Such
an architecture is the dimensionally decomposed router described in [104]. While
it extends the idea of the row-column decoupled router of [90] in the third dimen-
sion, the true novelty is fusing the crossbars of all the routers in the same vertical
“column” to a true physical 3D crossbar. Also, in [105], a router composed of two
totally decoupled modules, one for inter-layer communication and one for intra-layer
communication was presented.

Another option is the implementation of a true 3D crossbar as presented in [106].
The authors designed a 3D crossbar to route any permutation between a set of N×N
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I/O terminals on one layer of a 3D chip and a second set of N × N I/O terminals on
another layer using intermediate layers called Crossbar-Switch Layer Sets (CLSs)
sandwiched by the two I/O layers. This approach provides high bandwidth, but adding
too many CLSs could lead to defects.

A multi-layered 3D router was proposed in [107]. It is in fact a router occupying all
layers in the 3D chip. An important advantage besides reduced power consumption
and increased performance, is that it is compatible with similarly multilayered cores
[108].

In order to take advantage of the fast vertical links and at the same time alleviate
the problems related to TSVs, in [109] the authors present a Quasi Delay Insensitive
(QDI) asynchronous logic 7-port router with serial vertical links. This implementa-
tion requires serializer/deserializer circuits to forward a flit from a “planar” port to
a vertical one and vice versa. Investigation of the optimal serialization ratio showed
that serializing vertical signals can be advantageous for medium density TSVs for
any CMOS technology node. However, for high density TSVs the serial vertical links
are advantageous only from 32 nm.

Another approach for reducing vertical link footprint was proposed in [110]. The
authors proposed a 3-D NoC architecture based on Bidirectional Bisynchronous
Vertical Channels (BBVC), which can be dynamically self-configured to transmit
flits in either direction, improving bandwidth utilization, routability at each layer
and area footprint by 47 % at 65 nm technology node.

Bufferless routing has also been proposed for 3D routers in [111]. Utilizing a
three-stage permutation network instead of an allocator and crossbar, a single cycle,
1.25 GHz was achieved in a 65 nm technology.

3.4.6 Router Scaling

Since adopting an irregular topology may lead to large-radix routers, this section
contains an exploration of how routers scale with phit size (word-length or bit-
width) and number of ports (radix) in terms of performance and area. Xilinx FPGA
technology was used to prototype routers of various phit sizes and radices. Figure 3.18
shows how a 7-port router scales with phit size from 4 to 64 bits in terms of area. As
expected, the growth is linear.

Figure 3.19 shows how performance scaling for the same implementations. It can
be seen that the router degrades very gracefully with phit size in terms of performance
(clock frequency). In fact, the clock frequency remains almost constant for all phit
sizes.

As mentioned, routers scale roughly quadratically with the number of ports.
Figure 3.20 shows the slices required in Xilinx devices for router implementations
for five to 16 ports. It can be seen that the 16-port router requires approximately
nine times the slices required by the 5-port router, which is close to the theoretical
162

52 = 256
25 = 10.24.
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Fig. 3.18 7-port router area scaling with word-length (phitsize)

Fig. 3.19 7-port router performance scaling with word-length (phitsize)

3.5 Network Link Design

The link that physically connects the ports of two adjacent routers or a router and
the NI of a node is realized by wires. The number of wires required is the phit size
plus the wires needed for the flow control information that must be exchanged (see
Sect. 3.1). Multiple physical links [112] can be placed between a transmitter and a
receiver. This complicates floor planning but it can be a viable alternative to virtual
channels, multiplexing flits in space instead of time.

In order to achieve the potential gains of employing a NoC-based architecture
(i.e., link energy savings, lower traffic delay among high-capacity links, etc), careful
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Fig. 3.20 Router scaling with the number of ports

design of links should be done to overcome penalties due to uneven load distribution
across links.

The typical parameters that characterize the links of an NoC architecture can be
summarized as follows:

• direction: it gives the orientation of message transfer. Possible values for this
parameter are simplex, half-duplex, or duplex. For half-duplex, control messages
are needed to switch the message transfer direction. Full-duplex is the usual choice
for NoCs for applications with demanding bandwidth constraints.
• burstiness: it corresponds to the traffic characteristics, which can be either periodic

or not. The first approach (i.e., periodic) is suitable for modeling a channel with
constant data rate. On the other hand, a periodic traffic is characterized by minimum
burst interval and maximum burst length.
• latency: it describes the absolute (or relative) time of a single unit of data trans-

mitted from the sender to the receiver. This parameter is constrained by the target
application.
• bandwidth: it defines the channel ability of transferring data.
• reliability: guarantee that data are sent and received correctly (i.e., without cor-

ruption, loss, duplication. etc.).

3.5.1 Planar Link Design

Figure 3.21a shows a link between a transmitter (TX) and a receiver (RX). The link is
composed of a number of wires, the phit (data) and the flow control signal wires. The
objective of NoC link design is the same as general wire design in VLSI technologies,
namely to arrive at an implementation with low delay and power consumption with
acceptable noise levels. Wire delay is due to the inherent resistance and capacitance of
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Fig. 3.21 Link designs options (a) link signals, (b) wire circuit equivalent with lumped resistance
and capacitance, (c) Equivalent π model circuit (d) wire broken into segments using inverters and
(e) using registers

the wire (known as RC delay) [113]. An equivalent RC circuit for a single wire of the
link of Fig. 3.21a with lumped resistance and capacitance is shown in Fig. 3.21b. Since
both wire resistance and capacitance are directly proportional to wire length, wire
delay is proportional to the square of the wire length, making long wires prohibitively
slow. The equivalent circuit known as the π model is shown in Fig. 3.21c.
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A simple model for the wire delay is the Elmore delay model [114]. It can be
further simplified if we consider the Rs and CL as negligible. In that case the wire
flight time equals RC

2 [113].
A common wire design technique is to break a long wire of length l into N shorter

segments, each l
N long, by inserting N − 1 repeaters, each driving the next segment.

The repeaters can be inverters as shown in Fig. 3.21d, noninverting buffers, registers
as shown in Fig. 3.21e or even FIFOs. The repeaters introduce delay themselves
(as well as additional area and power consumption), and in the case of registers or
FIFOS, latency which must remain in acceptable levels for the target application.
Using FIFOs requires flow control signals among repeaters as well as shown in
Fig. 3.21e. On the other hand, register repeaters act as both distributed buffering
and pipeline stages, possibly increasing throughput. It must be noted, however, that
the above techniques should be no substitute for good floor planning that leads
to reasonable wire lengths, but rather a complementary (orthogonal) optimization.
Automatic synthesis from RTL especially with poorly selected design constraints
will lead to prohibitive wire lengths, and performance that cannot be sufficiently
improved by pipelining links.

Inserting repeaters introduces delay, area and power overheads. If the repeaters
are too few (and therefore the segments relatively long) the delay is dominated by
the wire delay. On the other hand, inserting too many repeaters will again increase
delay because of the repeater delay. From the above, it can be inferred that there is an
optimal number of repeaters that should be inserted. In the case of inverter repeaters,
the optimum segment length is given by the formula [113]:

l

N
= 0.77×

√
F O4

RC
(3.6)

while the propagation delay per unit of length is given approximately by [113]:

tpd

l
= 1.67×√F O4× RC (3.7)

where FO4 is the delay of a fan-out of four inverter in the target technology.
However, the energy per unit of length for sending a single bit for this mini-

mum propagation delay is 87 % increased compared to the energy per unit of length
required for sending a single bit with no repeaters [113].

Furthermore, A wire also has high capacitance to its neighbors [113]. Because of
that capacitance, when a neighbor switches either from 1 to 0 or 0 to 1, the wire tends
to switch too. This effect is known as capacitive coupling or crosstalk and can have
significant impact on noise on nonswitching wires and therefore reliability, as well
as increased delay on switching wires [113]. Considering the typically high number
of wires in a link, crosstalk effects should be carefully analyzed in NoC link design.
Common design approaches for reducing crosstalk effects increase the distance of
neighboring wires and shielding data wires from crosstalk on one or both sides using
VDD and ground wires. An alternative, if the application constraints allow it, is using
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a serial link as in [109], where an asynchronous bit-serial interconnect structure,
comprising encoder, serializer, deserializer, and decoder circuits was proposed.

Besides the general design goals for performance, reliability and power con-
sumption, links are used as distributed buffers in a number of research efforts.
iDEAL (inter-router Dual-function Energy and Area-efficient Links) [115] proposed
to reduce buffer size while minimizing performance degradation due to the reduced
buffer size by using already existing repeaters along the inter-router channels as
buffers along the channel when required. This approach was combined with com-
pletely bypassing the router buffers when possible in [81]. Repeaters can also be
designed to sample and hold data values thereby storing values on the channels
[116].

Apart from conventional link implementations, there are also approaches trying
to improve the efficiency of communication infrastructure in NoCs. Among others
is Photonic NoC [117], which can provide high bandwidth photonic links for high
payload transfers. The limitation of employing such a technique is the complex
design for switch architectures that incorporate more than four ports. Also, there are
approaches for replacing long interconnects with on-chip RF/wireless connections
[118].

In [119], long link insertion between nonneighboring nodes in a mesh topology
was proposed to increase performance by traversing otherwise multihop distances in
a single hop through the long links, together with an appropriate routing algorithm.
Similarly, long links are also required for the wraparound links in torus topologies.
In [120], instead of utilizing repeaters for such long links, a current mode signaling
scheme was proposed.

3.5.2 Vertical Link Design

Vertical links differ significantly from planar links, creating an inherent asymmetry
in 3D routers as already discussed. There are three technologies that allow inter-die
interconnect: Two are contactless (capacitive and inductive coupling) while the third
is Through Silicon Vias (TSVs) [101]. TSVs are the most promising technology for
NoC architectures.

As already discussed, TSV vertical links create an inherent asymmetry in 3D
NoC architectures, due to their shorter length compared with horizontal (planar)
links. Vertical links are significantly faster (about two orders of magnitude). There
are, however, certain challenges associated with 3D link design. TSVs have differ-
ent resistance and capacitance characteristics than planar links. Therefore the wire
connecting transmitter and receiver of Fig. 3.22 has three distinct segments as shown
in Fig. 3.22a in the case of a single interplane via. The equivalent circuit that can be
used with the Elmore delay model is shown in Fig. 3.22b. According to the Elmore
delay model the propagation delay is:
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tpd = RsC1

2
+ (Rs + R1)(C1 + Cv)

2
+ (Rs + R1 + Rv)(C2 + Cv)

2

+ (Rs + R1 + Rv + R2)× (C2 + CL)

2
(3.8)

In the case of multiple interplane vias, the equivalent circuit is shown in Fig. 3.22c.
Even using the simple Elmore delay model, optimal via placement in order to min-
imize total interconnect delay is not straightforward, particularly for multiple inter-
plane vias [101]. For that reason, heuristic algorithms have been proposed.
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In [121], the authors present a design methodology and performance evaluation
for a hierarchical small-world NoC with on-chip millimeter (mm)-wave wireless
channels as long-range communication links.

Questions

3.1 What is the difference between circuit switching and packet switching?

3.2 What is the difference between virtual cut-through and wormhole switching?

3.3 Name the basic approaches for solving the deadlock problem.

3.4 What are deadlock and livelock? Why is it important for NoC routing algorithms
be deadlock and livelock-free?

3.5 Which are the basic classes of NoC routing algorithms? Are they prone to dead-
lock, livelock or both?

3.6 Describe the basic blocks of a baseline NoC router and their function.

3.7 What are the advantages and disadvantages of bufferless routing?

3.8 How can the baseline 2D mesh router be extended to 3D mesh? Why is that
design naive?

3.9 What are the main design challenges in link design?

Problems

3.10 Assuming a minimum required data rate between a source and destination of
2 Mb/s with a distance D of four hops, a phit size of 32 bits and routing and switching
times of 5 ns evaluate the following switching schemes:

1. circuit switching
2. SAF packet switching
3. wormhole switching
4. pipelined packet switching

3.11 Assuming a 3×3 torus NoC, calculate the minimum number of hops (shortest
distance) required to reach destination node (2, 2) from source node (1, 0). Give the
exact trace of hops for XY routing.

3.12 Likewise for a 3D NoC with a 3×3×3 mesh topology and XY Z routing from
source node (3, 1, 2)to destination node (2, 1, 1).

3.13 Write pseudocode for the XY (and XY Z ) routing algorithm.

3.14 Prove that XY (or XY Z ) routing is livelock-free.

3.15 Assume a bufferless deflection algorithm in a mesh topology that prioritizes
flits based on distance from their destination in other words favors flits that are away
from their destination. Is this algorithm deterministically livelock-free?
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3.16 Create the routing table for router (1, 1) for the topology of Fig. 2.1.

3.17 Assuming a 5-port hot potato router in a mesh topology that prioritizes flits
depending on an age (number of hops) counter. Allocate the output ports for the
following flits that arrive simultaneously:

Flit Requested port Hops

1 W 3
2 N 2
3 W 2
4 S 1
5 W 4

3.18 Derive an expression for the complexity in gates of the multiplexer implemen-
tation of an n input crossbar.

3.19 Similarly for an n-input-output port allocator.

3.20 Assuming a 5-port router has an area of S and the target MPSoC in the same
technology has 16 cores, estimate which of the following NoCs is more area efficient
without using any CAD tools.

(a) A 4×4 mesh.
(b) A single 16×16 crossbar.
(c) A custom topology using one 10×10 crossbar and two 2×2 meshes.

3.21 Consider a NoC with a link bandwidth requirement of 200 Gb/s, and a 3-cycle
maximum latency requirement between routers. The link features a phit size of 64
bits and a link wire delay of 1ns without repeaters. The FO4 delay is 10 ps.

(a) Does a link without repeaters meet the bandwidth requirement?
(b) Design a link with appropriate stages and repeaters to meet the design con-

straints.

Projects and Lab Exercises

3.22 Design and simulate a 4×4 pass transistor crossbar with 4 bits per port.

3.23 Design a configurable 5×5 MUX-based crossbar with 8, 16, 32, and 64 bits per
port. Implement all configurations in a technology of your choice. Notice the scaling.

3.24 Similarly, a configurable 5×5 port allocator with 8, 16, 32, and 64 bits per port.

3.25 Design and simulate a 5-port NoC wormhole router with two VCs in VHDL or
Verilog. Use the designs of labs 9.11 and 9.12.

3.26 Design and simulate a 7-port NoC wormhole router with four VCs in VHDL or
Verilog.

http://dx.doi.org/10.1007/978-1-4614-4274-5_2
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Chapter 4
Power and Thermal Effects and Management

Abstract As semiconductor processes scale to smaller and smaller feature sizes,
manufacturing reliable digital designs is challenging how systems are traditionally
designed. Specifically, the shrinking of transistor and wire size imposes that these
components simultaneously are becoming more prone to complete, or parametric,
failure at manufacturing time. Additionally, the derived systems are increasingly
expensive to produce and less likely to function correctly for as long as intended.
In order to address these challenges, the NoC-based systems have to be designed
with reliability and fault tolerance features in mind. Toward this goal, a number of
design techniques and methodologies are available that promise to provide sufficient
fault coverage with controllable overhead in terms of hardware redundancy and
performance (e.g., delay/power) degradation. This chapter studies the origin of faults
in modern technologies and explains the classification to transient, intermittent, and
permanent faults. A survey of fault tolerance methods is presented to demonstrate
the diversity of available methods. Fault tolerance methods for NoCs are studied at
different layers of the OSI reference model.

4.1 Introduction

In this chapter, we discuss why power consumption has become one of the main (if not
the main) design concerns in today’s complex digital integrated circuits. The impor-
tance of this problem is also highlighted from the continuously increased interest both
from industry and academia for proposing solutions at different level of abstractions
aiming to address the consequences of the excessive amount of power consumed by
MPSoC platforms. Toward this direction, various roadmaps (e.g., ITRS [28]) indi-
cate that in the near future these concerns are most likely not to go away; in contrast,
CMOS scaling only seems to make the problem even worse.

There are many reasons why designers worry about power dissipation. One con-
cern that has come consistently to the foreground in recent years is the need for
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“green” electronics. While the power dissipation of electronic components until
recently was only a small fraction of the overall electrical power budget, this picture
has changed substantially in the last few decades. More specifically, if Moore’s law
would continue unabated in the future and the computational needs would keep on
doubling every year, the total energy of our galaxy would be exhausted in the rela-
tively low time span of 180 years (even if we assume that every digital operation is
performed at its lowest possible level).

There exist very compelling reasons why a further increase in power density at
MPSoCs should be avoided at all costs. As shown in Fig. 4.1, power densities for
on-chips can become excessive and lead to degradation or failure, unless extremely
expensive packaging techniques are used [48]. To drive the point home, power density
levels of some well-known processors are compared to general world examples, such
as hot plates, nuclear reactors, rocket nozzles, or even the sun’s surface. Surprisingly,
high-performance ICs are not that far off from some of these extreme heat sources.

In advance of discussing in more detail the impact of increased power consump-
tion to reliability degradation, some words about useful metrics are necessary. So
far, we have used the terms power and energy quite interchangeably. Yet, each has
its specific role depending upon the phenomena that are being addressed, or the
constraints of the application at hand. Average power dissipation is the prominent
parameter when studying heat removal and packaging concerns of high-performance
processors. On the other hand, peak power dissipation is the parameter to watch when
designing the complex power supply delivery networks for integrated circuits and
systems. In contrast, for some types of devices (e.g., mobile platforms), the type
of energy source determines which property is the most essential. Specifically, in
a battery-powered system, the energy supply is finite, and hence energy minimiza-
tion is crucial. Finally, by dividing power dissipation into dynamic (proportional to

Fig. 4.1 Power density for different processors [48]
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activity) and static (independent of activity) is crucial in the design of power man-
agement scenarios exploiting the operational modes of the system.

Even though concerns about power density may seem quite recent to most design-
ers, this issue has surfaced numerous times in the design of electronic components
before. This occurs mainly because power density is tightly firmed to the on-chip
temperature values, which might affect the performance of target MPSoCs. In the
past, die sizes were small enough, and hence the activity distribution over the die was
quite uniform. This translated into an almost flat temperature profile at the surface
of the die. However, with the advent of SoCs, more and more diverse functionality
is integrated in close proximity, which very often leads to considerable variations
in terms of workloads and activity profiles. For instance, a typical NoC integrates
multiple levels of cache memories on the die, just next to the processing computing
cores. As the data path of this NoC is clocked at the highest speed and is kept busy
almost 100 % of the time, its power dissipation is substantially higher than that of
the cache memories.

This results in the creation of thermal hotspots over the die, which in turn impacts
the long-term reliability of the part and complicates the verification of the NoC-
based design. Moreover, execution speed and propagation delay are indeed strongly
dependent on temperature values. With temperature gradients over the die, which
may change dynamically depending upon the operation modes of the processors,
simulation can now not be performed for a single temperature, as was the common
practice.

The impact of temperature on long interconnects in a NoC framework is dis-
cussed in [26]. Based on circuit simulations in different CMOS process technologies
(65 nm, 45 nm and 32 nm), there is an increasing impact of both spatial and temporal
thermal variations on interconnect delay and energy. Temperature effects are par-
ticularly challenging due to their dynamic nature, their dependency on the external
environment, and the circular relationship with device leakage. Additionally, tempo-
ral and spatial temperature variations on the physical layers can significantly impact
the performance and reliability of the overall NoC. Thus, it is necessary to conduct a
thorough study both for spatial and temporal variations of thermal impacts on NoC
interconnect in order to meet design budgets.

Performance degradation and reliability issues due to thermal variation have been
an ongoing problem in chip design. Furthermore, the communication bandwidth in
future network on chip architectures will probably be limited by prohibitive levels of
power consumption [45]. In order to address the previously mentioned temperature
imbalance, a complex package has to be constructed, which allows for the heat to
spread over a wider area, thus improving the heat removal process. However, pack-
aging cost can then become an important (if not dominating) fraction of the total
cost. This imposes that design techniques and methodologies that help to mitigate
the packaging problems, either by alleviating the gradients, or by reducing the power
density of selected subsystems, are absolutely essential. Moreover, with power den-
sity and hence cooling costs rising exponentially, processor packaging can no longer
be designed for the worst case, and there is an urgent need for runtime processor-level
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techniques that can regulate operating temperature when the package’s capacity is
exceeded.

To make matters worse, regarding the 3D NoCs, heat transfer is further restricted
by the low thermal conductivity bonding interfaces and thermal obstacles across
multiple IC layers. A viable solution to dramatically reduce the operating temperature
of 3D architectures is based on using liquid cooling on microfluidic channels. In order
to deliver currents to 3D architectures, while suppressing the power supply noise to
an acceptable level, designers use a highly complex hierarchical power distribution
network in conjunction with decoupling capacitors. However, the usage of such
solutions poses major challenges to routing completion and congestion.

This chapter discusses in more detail the impact of increased power and temper-
ature values on reliability degradation for NoC-based MPSoCs. Toward this direc-
tion, we present an overview of different methodologies applied at different layers of
abstraction. Since reliability modeling and reliability degradation analysis are two
computational intensive tasks, algorithms and tools that automate this procedure are
also discussed throughout this chapter.

4.1.1 Models for Power, Energy, and Temperature

There are numerous works dealing with the problem of power/temperature mod-
eling and analysis. The most known energy models for NoC architectures can be
summarized, as follows:

• Bit Energy of Packet: When a packet travels on the interconnect network, both the
wires and logic gates on the data path will toggle as the bit-stream flips its polarity.
A typical approach toward this direction is described in [68], where the authors
aim to estimate the energy consumption for the packets traveling on the network,
by following a similar approach to [43]. More specifically, the energy consumed
for each bit (in wires and logic gates inside the switch) is computed every time a
bit flips its polarity (from previous bit) in the bit stream.
• Packets and Hops: When the source and destination nodes are not placed adjacent to

each other on the network, a packet needs to travel several intermediate nodes (i.e.,
hops) until reaching the destination. Additionally, depending on the traffic scenario,
packets with the same source and destination nodes may not travel through the
same number of hops, and they may not necessarily travel on the data path with
the minimum number of hops. Thus, the number of hops a packet travels greatly
affects the total energy consumption needed to transport the packet from source
to destination. Based on this model, as the packet travels between nodes, the
corresponding interconnect wires will be charged and discharged, whereas the
logic gates inside the node switches will toggle. An example of applying this
model in order to estimate the energy consumption can be found in [68]. More
specifically, authors in this work assume a tiled floor-plan implementation for
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MPSoC and calculate the total energy consumed per packet by multiplying the
number of hops a packet travels by the energy consumed by one packet per hop.

Apart from these, in the literature there are a lot of models that deal with
power/temperature issues both for 2D and 3D architectures. For instance, TEMPEST
[11] is a thermal model based on an equivalent RC circuit. However, this approach
contains only a single RC pair for the entire chip, giving no localized information.
The importance of using a detailed thermal model that includes localized heating,
thermal diffusion, and coupling with the thermal package is discussed in [8]. The
derived model is applied to evaluate a variety of techniques for supporting Dynamic
Thermal Management (DTM). A fast and accurate high-level power model based
on an empirical power model of links and switches for Nostrum NoC is presented
in [65]. This model was validated with the Synopsys Power Compiler, while the
experimental results shown that it allows a fast power analysis with accuracy within
5 %. As compared to Power Compiler for similar-sized NoC, there are works (e.g.,
the one proposed by [65]) that claim considerable speedup ranging up to 500× faster
execution. Hotspot [62] is another accurate yet fast model based on an equivalent
circuit of thermal resistances and capacitances that correspond to microarchitecture
blocks and essential aspects of the thermal package.

One challenge of utmost importance about 3D architectures is the heat dissipation
and the thermal management [59]. In order to tackle this issue, several analysis
techniques have been proposed the last years [14, 29, 44, 49].

4.1.2 Wear-Out Mechanisms

Defects at VLSI designs are tightly coupled to the operating conditions. As manu-
facturing processes scale, permanent faults occur more frequently due to wear out
because of increased strain on ever smaller transistors and wires. Wear out is a time-
dependent process, whereby over the course of normal operation the integrity of a
portion of a device degrades and eventually fails to behave as originally intended,
resulting in a permanent wear out induced fault. More specifically, as the power
density increased over the last decades due to the technology scaling, it had a conse-
quence that also total power/energy consumption was raising, which in turn leads to
higher on-chip temperature values. This has a direct impact on the system’s reliability,
since the failure rates rise exponentially with the temperature increase.

There can be distinguished three periods of device reliability, as they are depicted
in Fig. 4.2. In the very beginning during the burn-in period and in the end during the
wear out period, the failure rates are high enough. On the other hand, during normal
working period, the failure rate remains constant on a rather low level.

Wear out phenomenon occurs for a variety of reasons and in a variety of ways.
Important wear out mechanisms include [31]:

• Negative Bias Temperature Instability (NBTI), which is the degradation of tran-
sistor performance as charge is implanted in the gate, resulting in timing failures;
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Fig. 4.2 Failure rates during product’s lifetime

• Time-Dependent Dielectric Breakdown (TDDB) represents the destruction of gate
oxide that occurs when sufficient charge is implanted in the gate to result in a
junction-gate short, due to the high electric field strength;
• Electro-Migration (EM) models the movement of metal atoms away from where

they had been deposited, induced by the repeated collision of high-energy elec-
trons, eventually resulting in short- or open circuits;
• Thermal Cycling (TC) affects the damage accumulated as a result of uneven expan-

sion and contraction of different parts of the system due to uneven heating and
cooling of the system;
• Stress Migration (SM) is the movement of metal atoms (much like EM), induced

by the uneven expansion and contraction of different materials in the system.

The previously mentioned failure mechanisms have a strong dependence on
operating conditions, and more specifically on the temperature values. Since the
on-chip temperature increases with technology scaling, the wear out problem is
expected to become far more important in the close future [28]. Additionally, due
to leakage power, both the supply, as well as the threshold voltage, no longer scale
ideally. As a consequence, power density is increasing, and therefore so is sys-
tem temperature. Among others, the increase at temperature values also imposes
higher mean-time-to-failure (MTTF) rates because the EM, TDDB, SM, and NBTI
decreases exponentially, while the MTTF due to TC decreases proportionally to
(1/T )2.35 [31].
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4.2 Classification of Faults

System failure occurs when, due to one or more faults, the system is no longer able
to implement the function for which it was designed. For instance, it is possible
after a fault, a system not to have the necessary amount of hardware resources in
order to complete a task (i.e., the amount of memory is not sufficient to perform a
computation). Alternatively, a system may simply lack the resources to complete a
task before a given deadline.

The three fundamental terms in the present context are fault, error, and failure.
While these terms are often used synonymously in the literature, they are not identical
but rather related by the following cause-and-effect relationship: faults are the cause
of errors, and errors are the cause of failures. A different view of the cause-and-effect
relationship mentioned above is the classification into different abstraction levels at
which faults, errors and failures occur. More specifically, failures occur in the external
level, errors occur in the informational level, while faults occur in the physical level.

The classical fault model for digital circuits and busses can be summarized as
follows:

• Single Stuck-at Fault Models: It is one of the first introduced fault models which
is common up to now. In this model, faults are represented as a node having a
fixed logic value (stuck-at-0 or stuck-at-1). Such a kind of faults is permanent,
while the basic functionality of the circuit is not altered. The main advantage of
employing this model is its conceptual simplicity. Current research efforts still
examine the single stuck-at fault model. However, this model does not provide an
accurate representation of the physical defect’s behavior [2].
• Bridging Fault Models: It models two signals shorted together. Such kind of fault

may change the circuit’s sequential behavior, while the voltage level at the end of
two shorted wires can massively depend on the location of the bridge. A problem
with this kind of fault is that they cannot be predicted in advanced. For instance, a
strong driver will for sure overpower a smaller transistor if their outputs are shorted
but two equally strong drivers will probably generate an unpredictable value as
their common output.
• Open Fault Models: Similar to bridging faults, this kind of defect is common in

CMOS processes, since latest architectures incorporate more metal layers (and
hence much more vias). Additionally, the copper interconnects make reliability
issues even more critical [1]. This kind of fault fixes the gate of a transistor at
the open value, and hence the transistor cannot be switched on. Predicting the
behavior of a circuit with a (resistive) open is a difficult task, which has not yet
fully understood [2].

In addition to that, it is possible to categorize the system faults depending on their
duration. More specifically, based on the duration of the faults, they can be classified
into three categories: (i) transient, (ii) intermittent, and (iii) permanent.

Transient faults are single errors in logic caused by an event external to that logic
(e.g., cosmic radiation, contaminated package) [5]. The impact of transient fault to
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the proper system’s functionality is temporary, whereas it is almost very limited the
probability for a hardware resource to be affected by two consecutive transient faults.
However, since the consequences of transient faults usually cannot be estimated,
recalculation is almost assured to result in a correct output. Specifically, whether, or
not, a fault results in failure depends on whether and how the error propagates to the
system (e.g., shared memory, or output).

The occurrence of transient faults is tightly firmed to the scaling of process tech-
nology, since as transistors shrink, less charge (deposited due to the external event)
is necessary to trigger a fault [7]. This problem becomes far more important with the
continued increase of number of transistors that are integrated to the MPSoC archi-
tectures. Research work was already devoted to the study, detection, and correction
of transient faults.

The available design approaches incorporate techniques in order to reduce the
likelihood of transient errors to result to enormous output. For instance, transient
errors in processing cores are mitigated through the careful instantiation of functional
units with variable resilience so that reliability, performance, and cost constraints are
met [60]. Similarly, there are also software tools that automatically provide sufficient
protection to digital systems against single event upsets. The most widely accepted of
these tools is based on appropriately triplicating the system’s functionality mapped
both on logic and memory resources, which is candidate to be affected by these faults
[24]. Regarding the interconnect structures, there are available design approaches
that include various recovery mechanisms for handling transient errors in on-chip
networks [42].

These faults can be represented on multiple levels of abstraction. For instance,
on the device level, transient faults are represented as voltage, or current, sources.
Device level models considering cosmic particles have already been studied with
SPICE simulations [40], that were used to represent alpha particle collected charges.
Similarly, at the logic level, transient faults are modeled as bit-flip of the current prop-
agating signal, whereas transient faults in memory/storage elements are represented
as changes in logic values.

The second class of upsets affects the intermittent faults. There are two differen-
tiations between these faults and those occurred due to transient upsets. Specifically,
the intermittent faults are reproducible, while the conditions causing the fault remain
in force [15]. For instance, in case the on-chip temperature is higher than a particular
threshold, then it is possible to violate the setup time for a flip-flop along the system’s
critical path. As long as the system is too hot, the fault exists and the system fails. On
the other hand, if the system cools down, it returns to the previous (correct) behavior.
There are some works dealing with efficient ways to predict when permanent failure
will occur based on the detection of intermittent faults [57]. Device degradation tends
to precede total failure, and as a result, online test can be used to monitor gradual
changes in performance and use this information to predict when timing failure is
imminent.

The last class of upsets affects the permanent faults. In contrast to previous
approaches, if such a fault occurs onto a device, it is irreversible because it leads
to a physically broken device. The only possible way to overcome these faults and
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provide a correct operation for the architecture is by replacing the faulty component,
or working around it. Permanent faults may be further categorized depending on
their occurrence (either at manufacturing time, or later). Since it is not possible to
overcome from these faults with conventional design and/or algorithmic approaches,
throughout this chapter we will not discuss permanent faults any further.

4.2.1 Fault Tolerant Systems

In order to prevent, or at least alleviate, the consequences of reliability degradation,
a number of fault tolerant mechanisms have been proposed. The term fault tolerant
corresponds to a design able to continue its operation, possibly at a reduced level,
rather than failing completely, when some part of the system fails. Even though fault
tolerance could be though as a prerequest for the existing architectures, the exces-
sive mitigation cost makes it affordable only for mission critical systems. However,
there are numerous applications that can afford lower fault coverage for significantly
reduced mitigation cost.

Up to now, a number of architectures and design methodologies able to provide
nondistributed device operation have been proposed at different levels of abstraction.
Specifically, in literature, there are two mainstream approaches for designing fault-
tolerant systems. The first of them deals with the design of new hardware elements,
which are fault tolerant enabled, whereas the desired fault masking at the second
approach is provided at software level with the usage of specialized CAD tools.

Both approaches exhibit advantages and disadvantages. The (re-)designed hard-
ware blocks can either replace the existing components at conventional NoCs, or new
fault tolerant architectures can be designed to improve robustness. The drawback of
applying such a strategy is the increased design complexity, while the derived NoC
provides also a static (defined at fabrication time) fault tolerant mechanism. Typical
instantiations of this approach involve the usage of spare logic and routing resources.

On the other hand, the software-based fault masking combines the required
dependability level with the low cost of commodity NoC platforms. However, the
software-based fault tolerant systems assume that the designer is responsible for
protecting the design. Since this approach does not impose any hardware modifica-
tions, it is widely accepted for research and product development. Among others,
algorithms that provide different system mapping and/or routing under fault tolerant
and/or reliability constraints have been proposed.

4.3 Fault Tolerance Metrics

Fault tolerance metrics allows us to measure the system design in terms of its reli-
ability, availability, safety, maintainability and dependability against its failure rate,
mean time between failure (MTBF), and mean time to repair (MTTR). Specifically,
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failure rate (λ) is the expected number of failures a system can suffer during a specific
time period. Its reciprocal is the mean time to failure (MTTF), where MT T F = 1

λ
.

The relation between reliability and failure rate for a constant λ is R(t) = e(−λt)

[33]. Similarly, the MTTF is the estimated time for which the system is expected to
perform correctly before the first error occurs, whereas MTBF is the average time to
next failure.

MTBF = Total operating time

Number of failure occurs
(4.1)

A similar parameter is the MTTR (Mean Time to Repair) which denotes the average
time required to repair the system. MTTR provides the average time required between
injecting an error to the system and repairing the system.

MTTR = Time spend for repair

Number of repairs
(4.2)

Having these two metrics, it is possible to calculate the system’s availability, which
denotes the impact of these failures on the system, as follows:

Availability = MTBF

MTBF+MTTR
× 100 % (4.3)

While useful at system level, these metrics may overlook important properties of
fault-tolerant NoC subsystems. One such property that is misrepresented by use of
MTBF is the capability of a NoC medium to rapidly recover from failures. Even
in the case when the number of failures is high (which indicates a low, undesired
MTBF), if the recovery can be performed quickly (e.g., through flit-level recovery
[21, 42]), the impact of failures may be minimal, and therefore it may not affect the
application at all. For the same reason, the availability of the NoC subsystem in such
condition is misrepresented by the last equation.

Another drawback of these generic metrics is that they represent average values.
In the case of NoC fabrics that must meet tight quality of service (QoS) requirements
in the presence of failures, the average values are not useful since the performance
constraints (in terms of guaranteed latency per message or available throughput) have
to be met for all possible instances, not only on an average basis.

While there is little doubt that fault tolerance is a desirable and useful property
of NoCs, designers need simple, readily available, and self-sufficient metrics to be
able to characterize fault tolerant methods in the context of the specific NoC imple-
mentation. We introduce these metrics relative to the NoC’s ability to detect the
occurrence of faults and recover from failures. The employed metrics in this work
aim to address the issue of characterizing the effectiveness of fault tolerance schemes
for NoC communication subsystems in the context of the specific QoS requirements
that designers face in their implementation. They are not intended to substitute the
existing metrics, but to complement them by offering a more detailed view of the
properties of different fault-tolerance methods. An exhaustive analysis of the classic
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fault-tolerance metrics is outside the scope of this chapter. Instead, we choose to
illustrate how the metrics defined here can help designers gain more insight on the
actual performance of fault-tolerant implementations related to NoC architectures.

4.3.1 Countermeasures For a Fault-Tolerant System

One of the most important challenges in designing efficient MPSoC systems affects
the insurance that the communication infrastructure is available and operational
despite the possibility of faults. Toward this direction, methodologies and tools have
already proposed that try to derive fault tolerant systems.

There are five key elements in a comprehensive approach to fault-tolerant design,
as it is depicted in Fig. 4.3: avoidance, detection, containment, isolation, and recovery.
Ideally, these are implemented in a modular, hierarchical design, and encompassing
an integrated combination of hardware and software techniques. Moreover, the fault-
tolerant techniques can be applied at different layers from the set of ISO/OSI layers
[27] that the NoC may implement, resulting in numerous possibilities for fine tuning
the performance of the fault tolerance implementation by combining the (sub) set
of fault tolerant elements with the (sub) set of NoC layers. As an example, error
detection may be implemented in the data layer, and recovery may be realized either
in the data layer (e.g., if an error correcting code is used), or at the application layer.

In a more generic approach, the partitioning and derivation of requirements, and
the partitioning and implementation of fault/failure management techniques must
be realized in a hierarchical fashion. For each hierarchical level, the existence of
appropriate metrics allows the designers to have full control and understanding of the

Fig. 4.3 Countermeasures for a fault-tolerant system
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implications that a particular fault tolerant implementation will have on the operation
of a NoC subsystem.

As we have already mentioned, these mechanisms are applicable either at hard-
ware, or software level. Even though the hardware-based approaches are much faster
compared to the software solutions, the increased fabrication cost, as well as the addi-
tional effort required for design modifications, makes the software-based solutions
most widely accepted.

4.3.2 Fault Tolerance at Different Layer of Abstractions

For illustrating the set of metrics discussed in this chapter and their usability, we con-
sider a simple example of an application running on a NoC-based multiprocessing
system. The application employs two processes P1 and P2 on two different process-
ing cores, as shown in Fig. 4.4. Processes P1 and P2 use the NoC subsystem to
communicate with each other along the path shaded in gray.

The communication in a NoC-based architecture is performed with a hierarchal
fashion. This allows categorizing the available fault-tolerance solutions at different
levels of abstraction, ranging from the physical up to the application layer. Using
a layered representation of the data communication is a NoC-based system, and
considering a subset of the standard OSI layers, Fig. 4.5 shows the propagation of
faults from the physical level (faults affecting low-level device functionality) to the
application level (faults affecting the software application running on the NoC-based
system).

At each level in the hierarchy, faults can be characterized by type, source, fre-
quency of occurrence, and impact. At the lowest level (physical), it is assumed
that a fault results in a degraded operation of the respective component. If it is not
always cost-effective to detect and recover at the lowest level, the fault manifests
itself as a local error/failure which propagates to the next higher level, where the

Fig. 4.4 Processes
communicating across
a NoC fabric

P1 P2
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Fig. 4.5 Fault detection and repair at different hierarchal levels

corresponding fault-tolerant technique is evaluated again relative to performance
and cost-effectiveness. The hierarchical approach can provide back up at higher lev-
els for faults which, for any reason, are not handled at lower levels. Generally, the
higher the level in the hierarchy, the longer it takes to contain and/or recover from
the effect of a failure, but there are certain advantages with respect to area cost and
power dissipation.

For real-time NoC systems, time is the critical factor for specifying the perfor-
mance of the fault-tolerant implementation. Designers must decide on the effective-
ness of a particular method by knowing how quickly faults must be detected, how
quickly they have to recover from the occurrence of a fault, how long an error can exist
in the NoC infrastructure without impairing/compromising system performance.

From a hierarchical point of view, it is possible to apply fault detection and
correction mechanisms at different level of abstraction, whereas the selection of
most appropriate layer is based on the system’s specifications. An optimal fault-
tolerance solution should include parts from several abstraction layers. A fault should
be tackled at the level where it is most cost-efficient in terms of power consumption
increase and performance decline, whereas in order to have an efficient system level
approach, the methods used in each layer should fit into the whole, i.e., the methods
should provide means for interlayer information passing.

More specifically, in case a fault occurs at the lowest level of the hierarchy, it will
affect the proper functionality of a component, as compared to a fault that occurs
at the system level, where the overall system’s functionality might be endangered.
Additionally, since not all faults that may occur in a digital architecture are of the
same importance, or there are variations in terms of required fault coverage, the incor-
porated fault-tolerant techniques have to be applied with different aggressiveness.
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For instance, in case a fault is propagated to a higher level, it is possible to be detected
with a more power efficient control circuit. However, the higher the level, the longer
it takes to detect and correct a failure.

Based on the example application in Fig. 4.4 and considering a hierarchical imple-
mentation as in Fig. 4.5, we define metrics for the five elements of comprehensive
fault-tolerant methods.

4.3.2.1 Fault Avoidance

The goal of this task is to reduce or eliminate, if possible, the chances for an error to
occur. Different mechanisms are possible to be employed toward this goal, while the
majority of them are based on some form of redundancy. Unfortunately, hardware
redundancy imposes performance degradation in terms of delay, power consumption
and area utilization, due to additional infrastructure that imposes. Even though such
a limitation might be affordable based on the system’s specifications, in advance of
applying any hardware-based solution targeting to fault tolerance at NoC systems,
designers have to study carefully the impact of their decisions onto the system’s QoS
requirements. On the other hand, in case there is a demand for realizing fault avoid-
ance at software level, the most appropriate way is by incorporating error detection
and error correction codes. These approaches insert to the transmitted data either
parity information or the error correcting codes. Then, in case the receiver identi-
fies an error at the transmitted data, this error can be overcome. This is possible by
requesting data retransmission, or by incorporating dedicated hardware targeting to
also support error correction functionality.

Usually, fault avoidance techniques can be realized through information redun-
dancy (by means of error correcting codes for NoCs), or hardware redundancy
(N -modular redundancy being a typical example). Depending on the targeted number
of errors to correct, coding/decoding hardware blocks may require a certain number
of cycles to perform their operation. The associated time overhead adds to the total
latency of the data being transported across the NoC fabric. We define Tav,ov as the
time overhead of an avoidance scheme, and compute it as the difference between
data latency with (Latav) and without (Lat) fault avoidance:

Tav,ov = Latav − Lat (4.4)

The difference between various implementations of this concept can be signifi-
cant relative to this metric. In the example in Fig. 4.4, if coding/decoding functions
are implemented at each switch on the path between P1 and P2 (switch-to-switch
avoidance), the resulting time overhead will be significantly higher than in the case
where only end-to-end avoidance is implemented (i.e., data are encoded at the source
and decoded at destination).
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4.3.2.2 Fault Detection

The next hierarchical level in a fault-tolerant design is the detection of faults that
were not handled by the avoidance mechanism. Detection is built in most error-
correcting codes, which generally can provide information regarding the number
of un-corrected faults, when the correction mechanism fails (or is not even present
in the particular implementation). Fault detection is then used to assess the need
for recovery from potentially uncorrected fatal failures. The quicker the detection
mechanism signals the presence of un-corrected faults, the quicker the recovery can
be initiated.

The error detection at NoC-based architectures can be applied with two alternative
approaches: either at switch level, or with an end-to-end approach. Specifically, the
first approach assumes that error detection is performed at each switch of the NoC’s
architecture, in contrast to the second approach where errors are detected at the end of
a path (i.e., destination node). Even though the second approach (end-to-end check)
provides higher fidelity for data transmission without faults, it imposes an increased
latency whenever a fault is detected, and consequently the corrupted data have to be
resent. Hence, the error detection between consecutive switches is usually employed
for real designs.

We define the detection latency Tlat as the amount of time between the moment a
fault occurs and the moment it is detected. Going back to our example in Fig. 4.4, fault
detection may be performed by the processes P1 and P2 whenever data are received
(end-to-end detection), at the input ports of the intermediate switches (switch-
to-switch detection), or at each switch input–output port (code-disjoint detection).

4.3.2.3 Containment

Fault containment is concerned with limiting the impact of a fault to a well-defined
region within the NoC. Error containment refers to avoiding the propagation of the
consequences of a fault, the error, out of this defined region. The definition of these
regions should be carefully applied in order to ensure that there is no overlap between
them. Otherwise, faults that occur at a given region will affect hardware resources
assigned to the rest (overlapped) regions.

Fault containment regions (FCR) may be defined with variable resolutions,
directly correlated with the quality and resolution of the fault detection mechanism.
For the case of Fig. 4.4, and assuming an end-to-end detection mechanism, the fault
containment region can be defined as the entire shaded route between the cores where
processes P1 and P2 are being executed. It is essential that FCR are independent,
in the sense that a fault occurring in a FCR does not affect a different FCR. In this
respect, if two routes between cores/processes P1 and P2 can be found that are on
independent FCRs, and a fault is detected on one of the routes, the other route can
be used to provide an alternative path between processes P1 and P2.
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4.3.2.4 Isolation

The independency of fault containment regions can only be achieved if an effective
isolation method can be provided, which can guarantee that the effect of a fault
occurring in a FCR does not propagate to another FCR. At the physical layer, in the
case of permanent faults, isolation can be accomplished by marking or disconnecting
the faulty NoC components (links, switches, and routes) and avoiding their use until,
eventually, hardware recovery/repair can be performed through reconfiguration. At
higher layers, erroneous data packets can be dropped on the fly or at the destination
process, such that they are not allowed to interfere with the rest of the data and
propagate at application level.

4.3.2.5 Recovery

The ultimate goal of fault-tolerant schemes is to provide means to recover from
occurrence of failures. For fault-tolerant and QoS constrained NoCs, it is impor-
tant to recover from failures within the time budget allowed by the QoS specifica-
tions. Late recoveries, even when successful, are not acceptable, since they lead to
out-of-specification behavior of the NoC subsystem. Consequently, we define recov-
ery time (Trec) as the amount of time that passes between the detection of a fault
and recovery from the corresponding failure. A simple form of attempting recovery
of erroneous data flowing between processes P1 and P2 is to provide a hardware
correction at lower layers, or a retransmission mechanism at higher layers where,
upon detection of an error, an automated retransmission request (ARQ) is generated
and an error-free copy of original data is resent from the source process.

4.4 Error Control Coding for On-chip Signaling

Error control coding (ECC) is a prominent fault-tolerance method for on-chip signal-
ing. In this paragraph, we describe the terminology and principles of coding together
with promising coding approaches targeting to on-chip signaling.

In error control coding, a data word of length k is encoded to form a code-word of
length n, where n ≥ k. The added n− k bits are called check bits and in a separable,
also called systematic, code they are appended to the end of the data word to form the
code word. Separable codes are beneficial to be used in on-chip signaling, since the
data bits are directly accessible in the code word. More specifically, rather than many
data networks and wireless transmissions, where the common form of transmission is
serial, in on-chip signaling it is typical to provide parallel transmissions. Specifically,
in on-chip signaling a set of parallel wires usually forms a link, thus the check bits
mean additional wires. However, such an architectural selection enables a code word
at a time to be transmitted over the link.
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The efficiency of a code can be measured by its error detection and/or correction
capability and the relation of data word and code-word widths, the code rate R = k

n .
The code distance d is the minimum number of distinct bits in two code words.
In other words, the code distance corresponds to the minimum number of bits that
must be flipped to get another code word. The code’s error detection capability
can be calculated from the distance by td = d − 1, whereas the corresponding
error correction capability is defined as tc = � d−1

2 �. If a single code is used to
correct some number of errors and detect some more errors, the relation to distance
is d = 2tc+ td +1. Since the on-chip links are commonly formed by a set of parallel
wires, the code rate indicates the number of additional wires required for providing
the desired functionality. The lower the code rate, the more additional wires are
required, which in turn leads to area and power overheads.

A typical error that occurs in on-chip networks affects the burst errors, which have
impact on multiple adjacent bits in a code word. In parallel transmissions, a burst
error therefore means an error affecting two or more adjacent wires. This kind of
error situation can be a result of many phenomena in a chip (e.g., different kinds of
couplings between wires are likely to cause burst errors). An efficient way to cope
with burst errors is by interleaving. This approach requires partitioning the data word
into parts and encoding each of them separately. Then, the final code word is formed
by taking one bit at a time from each encoded part.

For instance, if we name the inputs as i0, ..., k−1, the check bits as c0, ..., n−k−1 and
there are three interleaving sections, the coding proceeds as follows: the check bits
c0, c3, c6, . . . are calculated from inputs i0, i3, i6, . . ., the check bits c1, c4, c7, . . . are
calculated from inputs i1, i4, i7, . . ., and the check bits c2, c5, c8, . . . are calculated
from inputs i2, i5, i8, . . . . Since the number of interleaving sections in this example
is three, the obtained code has burst error detection capability tburst

d = 3 × td and
correction capability tburst

c = 3 × tc, where td and tc are the error detection and
correction capabilities of the underlying code, respectively. We have to mention that
interleaving in parallel transmission links practically imposes reordering of the wires,
which usually is a very cost-efficient approach. Therefore, such a coding scheme suits
very well for on-chip realizations.

The interleaving affects mainly the burst error tolerance but it also has an effect
on tolerance against multiple single errors affecting the same code word. Multiple
single errors can be corrected if they affect separate interleaving sections.

4.4.1 Linear Block Codes

Linear block codes are a well-known and widely used set of codes. The name indicates
that a set of bits, a block, or a data word, is encoded at a time. A code word is always
a linear combination of the other code words. The encoding and decoding of these
codes is in most cases straightforward and fast, which makes them well suited for
on-chip realizations.
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Linear block codes can be presented by their generator matrix G, which is of size
k × n, where k is the data word length and n the code word length. The encoding
of a linear block code can be done with matrix multiplication −→c = −→a G, where −→a
is a data word vector of length k, G is the k × n generator matrix and −→c is a code
word vector of length n. The code is systematic if the generator matrix contains an
k × k identity matrix, i.e., the code word includes the data word unaltered.

Hardware realizations of systematic (separable) code encoders can be simplified,
because only n− k code word symbols have to be calculated and the rest are just the
symbols of the data word. Binary matrix multiplication is simply calculating parity
bits, which in hardware are implemented with trees of XOR gates.

Syndrome decoding is a common technique for decoding linear block codes. A
syndrome can be considered to contain information on the errors of a transmitted code
word in a compressed form. It is calculated by matrix multiplication −→s = −→u H T .
At this equation, the −→u is a received code word vector of length n (−→u = −→c +−→e ,
where−→c is a transmitted code word and−→e an error vector, both of length n), H T is
the transpose of the (n − k)× n parity check matrix and −→s is a syndrome vector of
length n − k. The parity check matrix can be constructed from the generator matrix
and vice versa. The syndrome gives the index to the table of minimum weight error
vectors, so the error vector −→e can be easily determined. The correction is done by−→c = −→u +−→e , eliminating the error from the received data word.

4.4.2 Hamming Codes

The most common linear block codes are the Hamming codes. A Hamming code
fulfills the rule 2(n−k) ≥ n + 1, where n − k is the number of check bits and n is
the length of the code word. The minimum distance of a Hamming code is 3, so
it can correct a single error in each code word (tc = 1), or it can be used to detect
double errors (td = 2). The Hamming code is also described as using the concept of
overlapping parity, where there are multiple parity bits and every data bit is involved
in calculating several of them.

The overlapping parity concept is a direct result of the matrix multiplication
encoding presented above. A modified Hamming code for both correcting single
errors and detecting double errors can be achieved by adding one more check bit,
which is used as the parity bit of the whole code word [33, 37]. The method of adding
one more parity bit to each code word is called extending and it can be applied to other
linear block codes as well. The opposite approach to extending is called shortening,
where a number of data bits is set always to zero, and therefore can be left out of
the code word. Thus, shortening with a factor of s results in a code which has data
word length k − s and code word length n − s. Shortening decreases the rate since
k−s
n−s < k

n , for s > 0. We have to stress that shortening is extensively used in on-chip
error control coding, because a bus width seldom directly matches the data word
width of the wanted code.
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Hamming codes are the most widely used codes in the research on interconnect
link error protection [72]. For instance, in [39], parity and Hamming coding have been
used in adaptive error detection system which is built to obtain a more energy efficient
design without affecting the error detection capabilities. The system monitors the
noise level of the transmission channel and dynamically changes to a code that
has better error detection capabilities in the case of an increased noise level, and
respectively changes to a weaker code when the noise level is lower. In the design,
parity, Hamming double error detection, and extended Hamming triple error detection
codes are used. A set of codes similar to Hamming codes are the Hsiao codes. They
differ from Hamming codes in the way the generator and parity check matrices are
constructed [37].

4.4.3 Cyclic Codes

Cyclic codes are a set of codes, where a cyclic shift of a code word generates another
code word. Because of this property, efficient realizations of these codes can be
achieved using linear feedback shift registers (LFSR). In the standard form this
creates nonseparable codes, but the codes can also be made separable by small
changes in the generation process [33]. Cyclic codes are normally presented with their
generator polynomial g(x) instead of the generator matrix. The generator polynomial
is of degree n − k and the encoding is proceed by c(x) = a(x)g(x), where a(x) is
the data word and c(x) the code word, both in their polynomial forms.

A class of cyclic codes, the cyclic redundancy checks codes (CRC) are often used
for detecting errors. These codes are able to detect single errors and adjacent multiple
errors, which make them extremely suitable for detecting burst errors. The number of
adjacent errors that can be detected is n−k−1, where k is the number of data bits and
the coded word contains n bits. Toward this scope, a generator polynomial of degree
n − k is used. For instance, CRC-8 (8 for the degree of the generator polynomial) is
used in a self-calibrating design to detect errors on the transmission channel, where
self-calibration means that the voltage swing for the transmission channel is scaled
dynamically to obtain minimum energy consumption [66].

4.4.4 BCH Codes

As the probability for multiple errors increases when scaling further into the nanome-
ter regime, error correcting codes capable of correcting several errors are needed. Pop-
ular linear block codes for multiple error correction are the
Bose-Chaudhuri-Hocquenghem (BCH) codes [63], which are also cyclic codes. They
can be easily constructed according to the specifications for correcting as many errors
as they are required. The BCH code is similar to Hamming code when used as a sin-
gle error correcting code. Actually, the Hamming codes are BCH codes with tc = 1
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(whenever the tc ≥ 2, the codes are called as BCH). In on-chip signaling, where only
two logic states are possible, only binary BCH codes are of interest.

The syndrome decoding method explained above is limited by the size of the
minimum error vector table. When the number of check bits n− k is high the table is
impractically large, and therefore alternative decoding methods should be used. The
decoding of BCH codes can be done using the Berlekamp-Massey (B-M) algorithm
[6]. This algorithm is iterative requiring 2tc iterations, where tc is the error correction
capability of the code. The calculations are done in Galois Field (GF) 2m, where
m depends on the length of the code (2m ≥ n). In addition to the actual algorithm,
a preprocessing circuit is also needed. Using Fourier transform in GF(2m) 2tc syn-
dromes is calculated. For binary BCH codes, this imposes quite similar trees of XOR
gates in hardware, similar to the syndrome calculation explained above. The error
vector −→e is extracted by using a method called Chien search to find the zeros of the
error-locator polynomial �(x) obtained from the B-M algorithm [6].

4.4.5 Reed-Solomon Codes

The Reed-Solomon codes are other cyclic codes that can be used to correct multiple
errors. The codes are nonbinary, which means that instead of bits, groups of m bits
(e.g., m=8, a byte) are used as symbols for the codes. The Reed-Solomon codes are
optimal meaning that they provide the maximum distance at the used number of check
symbols. If a word contains k groups of data and its length is n groups, at most � (n−k)

2 �
errors can be corrected. Because on-chip signals are binary, each symbol must be
coded by binary bits. These codes are especially effective in correcting burst errors,
since the detection and correction is based on symbols which consist of many adjacent
bits. On the other hand, their effectiveness in single error tolerance is limited, because
a single bit fault in a binary-coded symbol takes the whole correction capability of
that symbol. Binary codes, such as binary BCH, provide the same tolerance against
single faults with a lower number of check bits [6].

Decoding of Reed-Solomon codes is also based on the Berlekamp-Massey algo-
rithm. The main difference is that in addition to the error vector −→e also the error
values are needed to perform the error correction. The error vector −→e points the
erroneous GF(2m) symbol and the actual correction is done by adding the error
value of that particular symbol and the transmitted symbol itself. The error values
can be extracted using the Forney algorithm with inputs obtained from the B-M
algorithm. Also the Fourier transform requires slight changes compared to the one
used for BCH decoding. In Reed-Solomon decoding, all the calculations are done
with GF(2m) symbols while for binary BCH codes the syndrome calculation is just
calculating parities of different sets of bits [6].

A special feature of Reed-Solomon decoding is that it can be constructed, so that it
provides information on correctness of the decoding. This kind of information could
be very important in safety-critical designs, where it is better to stop the system than
giving a false result.
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4.5 Power and Energy Savings in NOCs

Power and energy savings in NOCs is another challenge that needs to be consid-
ered toward the goal of designing efficient interconnection structures for MPSoC
architectures. Power savings obtained by only scaling down supply voltage levels
are not going to be sufficient to compensate for a higher complexity, a larger inter-
connect capacitance and resistance, a higher operating frequency and an increased
gate leakage [28].

Up to now, there are approaches targeting to provide energy management of NOCs
mainly focused on controlling the power consumption of interconnects (network-
centric approach) [68], or managing power of the cores (node-centric approach).
Additional effort was paid in order to support both of these goals simultaneously
[54]. This paragraph discusses at different layers of abstraction a number of well-
established design approaches targeting to alleviate the impact of reliability degra-
dation at NoC-based systems by providing power and energy savings.

4.5.1 Physical Layer

At the physical layer, low-swing signaling is actively investigated to reduce com-
munication energy on global interconnects [71]. Specifically, in the case of a simple
CMOS driver, low-swing signaling is achieved by lowering the driver’s supply volt-
age Vdd . This implies a quadratic dynamic power reduction, since the Pdynamic ∝ V 2

dd .
Unfortunately, swing reduction at the transmitter complicates the receiver’s design.

In order to guarantee reliable data reception at NoC platforms, it is required
increased sensitivity and noise immunity. Toward this goal, the usage of differential
receivers has been proposed, which exhibit superior sensitivity and robustness. How-
ever, these receivers impose the doubling of the bus width. As an improvement of this
overhead, pseudo-differential schemes have been proposed, where a reference signal
is shared among several bus lines and receivers, and incoming data are compared
against the reference in each receiver. Even though the usage of pseudo-differential
signaling enables the reduction of the number of signal transitions; however, it has
reduced noise margins with respect to fully differential signaling. Consequently,
reduced switching activity is counterbalanced by higher swings and determining the
minimum-energy solution requires careful circuit-level analysis.

Another key physical-layer issue affects the synchronization. Traditional on-chip
communication schemes are based on the synchronous assumption. This selection
implies the presence of global synchronization signals (i.e., global clocks) that
define data sampling instants throughout the chip. Even though the usage of clocks
improves considerably the design-time for performing system synchronization, they
are extremely energy inefficient, whereas it is a well-known fact that a significant
fraction of the total power budget in digital integrated systems is consumed by
clock networks. Thus, postulating global synchronization when designing on-chip
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networks is not an optimal choice from the energy viewpoint. Alternative on-chip
synchronization protocols that do not require the presence of a global clock have
been proposed in the past [4, 25] but their effectiveness has not been studied in detail
from the energy viewpoint.

4.5.2 Data-Link Layer

At the data-link layer, a key challenge is to achieve the specified communication
reliability and/or fault coverage level with minimum mitigation cost in terms of
power/energy consumption. Toward this goal, a number of alternative error recovery
mechanisms can be applied to NoCs, but their energy efficiency should be carefully
assessed in this context. For instance, we can consider two reliability-enhancement
techniques: (i) error-correcting codes and (ii) error-detecting codes with retransmis-
sion. Both approaches are based on transmitting redundant information over the data
link, but the error-correction imposes additional hardware redundancy and compu-
tational complexity. Consequently, it is expected that error-correcting transmission
demands additional power consumption, as compared to the error-free case. Apart
from this flexibility, in case an error arises, systems that incorporate error detect-
ing schemes require that corrupted data will be retransmitted. Hence, depending on
the network architecture, retransmission can be very costly in terms of energy (and
performance).

This highlights that whenever an energy-efficient NoC has to be designed, there
should be a careful trade-off between the increased cost of error correction and the
energy penalty due to data retransmission. Either of these schemes may be optimal,
depending on system constraints and on physical channel characteristics. Since such
kind of decisions impose mentionable overheads in execution run time (they have to
find a viable solution at a large search space), the usage of automatic design space
exploration tools is almost a prerequest.

In case of shared-medium network links (such as busses), the media-access-
control function of the data link layer is also critical for energy efficiency. Toward this
goal, it is widely accepted the usage of arbitration (also known as
time-division multiplexing) schemes [3, 16, 64]. These approaches assume that a
single arbiter decides which transmitter accesses to the bus for every time slot. Unfor-
tunately, such a centralized arbitration exhibits a limited scalability, which indicates
that this approach is likely to be energy inefficient as the size of NoC scales up.
As an improvement to this limitation, there are available approaches dealing with
distributed arbitration schemes, as well as alternative multiplexing approaches, such
as code division multiplexing [69].
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4.5.3 Network Layer

The architecture of network infrastructure heavily influences the communication
energy. As it was already mentioned in previous chapters, the shared-medium net-
works (e.g., busses) are inefficient in terms of energy dissipation, whereas this prob-
lem became far more savage as the network size scales up [22]. This mainly occurs
because the data transmission at a bus-based communication scheme is performed by
broadcasting from one transmitter to all possible receivers, ignoring if the message
usually is destined to only one receiver, or a small group. In addition to that, the bus
contention, with the related arbitration overhead further contributes to the energy
overhead.

Preliminary studies on energy-efficient on-chip communication indicate that hier-
archical and heterogeneous architectures are much more energy efficient than busses
[25]. In their work, Zhang et al. [25] evaluate a hierarchical mesh network, where
nodes with high communication bandwidth requirement are clustered and connected
through a programmable generalized mesh consisting of several short communica-
tion channels joined by programmable switches. Clusters are then connected through
a generalized mesh of global long communication channel.

Apart from network architecture, the network control is also critical for supporting
efficient data communication with a NoC. For this purpose, careful study should
be applied for selecting the best candidate switching schemes for indirect network
architecture. From the energy viewpoint, the tradeoff is between the cost of setting
up a circuit-switched connection once and for all, and the overhead of switching
packets throughout the entire communication time on a packet-based connection. At
the first case, the control overhead is constant and it is applied once (at the setup
time), whereas in the latter case, it is distributed over many small contributions, one
for each on-chip router.

In case, the communication flow between network nodes is extremely persistent
and stationary, circuit-switched schemes are likely to be preferable. In contrast, if
we have to design a network for an irregular architecture, or for an architecture
with nonstationary communication pattern, then the packet switched scheme leads
to better performance and energy metrics. Needless to say, circuit switching and
packet switching are just two extremes of a spectrum, with many hybrid solutions in
between [61].

4.5.4 Transport Layer

The goal of transport layer is concerned with optimizing the usage of network
resources and providing a requested quality of service. An example of transport-
layer design issue that affects the energy efficiency of a NoC is the choice between
connection-oriented and connectionless protocols. In particular, the connection-
oriented protocols can become energy inefficient under heavy traffic conditions, as
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they tend to increase the number of retransmissions. On the other hand, out-of-order
delivery of data may imply additional work at the receiver, which causes additional
energy consumption. This highlights the balance that should be applied between the
communication energy and the computation energy at destination nodes.

Apart from the selected communication protocols, the flow control also con-
tributes significantly to the energy consumption. More specifically, if many transmit-
ters compete for limited communication resources, the network becomes congested
and the cost per transmitted bit increases due to the increased contention and con-
tention resolution overhead. The flow control can alleviate the consequences of this
problem by regulating the amount of data that enters the network. Even though such
an approach mitigates the congestion problem, it introduces a penalty at architecture’s
throughput.

4.6 On Designing Reliable NoCs

This section describes in more detail a number of selections aiming to alleviate the
consequences of increased power and temperature values at reliability degradation.
Toward this goal, we discuss some existing design methodologies for supporting effi-
cient application realization onto NoC-based platforms under reliability constraints.

4.6.1 Reliability Improvement Through Mapping Algorithms

One of the popular architecture level fault-tolerance techniques is to use redundancy-
based design [36, 67]. In such a system, critical design components are replicated
and results are voted to produce the output. However, replication techniques like
DMR, TMR etc., come with high area penalty. Stringent cost budget is increasingly
prohibiting the use of redundancy-based designs for MPSoCs.

A cost-effective solution for fault-tolerance involves migration of tasks from faulty
cores. The decisions about task mapping and/or scheduling can be precomputed at
design-time, or can be done at run-time. Accordingly, task mapping can be cate-
gorized as static, dynamic, and quasi-static. More specifically, static task mapping
involves analysis at design-time to maximize system reliability [18, 38] but does
not address task migration. On the other hand, dynamic approaches monitor system-
status and decide on task migration at run-time to minimize migration overhead
[17, 30, 58], or balance processor load [70]. However, the limitation of this approach
affects the throughput, which is not always guaranteed. Moreover, migration algo-
rithms need to be simple in order to minimize as much as possible the computation.
Finally, quasi-static task migration techniques compute task mapping decisions at
design-time for different fault scenarios [10, 12, 32]. As faults occur, these mappings
are looked up at run-time to carry out task migration. The advantage of this technique
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is that any sophisticated algorithm can be used at design-time despite the associated
mapping storage overhead.

A fixed order Band and Band reconfiguration technique is studied in [12]. Based
on this approach, the cores of target architecture are partitioned into two bands. When
one or more cores become faulty, tasks on these core(s) are migrated to other func-
tional core(s) determined by the band in which the tasks belong. The core partition-
ing strategy is fixed at design-time and is independent of the application throughput
requirement. Consequently, throughput cannot be guaranteed by this technique.

A re-execution slot based-reconfiguration mechanism is studied in [32]. Normal
and re-execution slots of a task are scheduled at design-time using evolutionary
algorithm to minimize certain parameters like throughput degradation. At run-time,
tasks on a faulty core migrate to their re-execution slot on a different core. However,
schedule length can become unbounded for high fault-tolerance systems. Moreover,
analysis is based on task graphs and therefore cannot be applied to streaming appli-
cations with cyclic task dependencies.

Task re-mapping technique based on off-line computation and virtual mapping is
proposed in [10]. Here, task mapping is performed in two steps—determining the
highest throughput mapping followed by generation of a virtual mapping to minimize
the cost of task migration to achieve this highest throughput mapping. These virtual
mappings are computed at design-time based on different fault scenarios. A limitation
of this technique is that the migration overhead significantly increases as this is not
considered in the initial optimization process. Moreover, throughput constrained
streaming applications do not benefit from a throughput higher than required and
can increase buffer requirements at output.

4.6.2 Reliability Improvement Through Routing Algorithms

The software level can also improve reliability related issues of NoC architectures.
The prevention of faults is mostly important for adaptive routing algorithms that are
sensitive to topology changes. For instance, a faulty switch or link will degrade the
topology into an irregular one and then the algorithms will fail. A candidate solution
to this is the usage of agnostic routing algorithms (i.e. LASH [55], TOR [50], LASH-
TOR [56], DL [52], multiple virtual networks [13], up*/down* [34], lturn [35], smart-
routing [51] and FX [19]) in combination with static reconfiguration. In such a static
fault-model, the network enters a reconfiguration phase when a fault is discovered,
the system is halted and drained of packets, then all routing tables are recomputed.
In case it is not possible to halt the network, then a possible solution is the usage of
a dynamic fault model. Whenever a fault occurs in this approach, the faulty link or
switch will be marked and another path configured. A limitation of methods based
on reconfiguration is the appropriately handling the reconfiguration time in order to
avoid possible packet loss, deadlock, and live-lock.

Apart from these, fault-tolerant routing algorithms were proposed in [53], while
[41, 46] describes a routing algorithm that aims to decrease the probability of
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system failures. A technique that disables certain nodes for packet processing but not
for packet routing is presented in [23]. Even though such a technique can provide
acceptable results; however, it may disable a significant number of healthy process-
ing elements. Another solution is to alter the routing tables in case of failure in order
to adapt them to the new topology after the failure [9]. This technique is extremely
flexible but it might result to significant performance degradation. In [20], a design
methodology for enabling fault tolerant routing for mesh and tori topologies under a
static fault model is discussed. The idea behind this fault tolerant approach is based on
using intermediate nodes for routing. More specifically, for some source-destination
pairs, packets are first forwarded to an intermediate node, and then from this node
to the destination node, without being ejected. This approach allows the use of fully
adaptive routing in the absence of failures, does not sacrifice any healthy nodes, and
only requires the use of one additional virtual channel (note that two virtual channels
are already required to provide fully adaptive routing [47]).

Questions

4.1 Why faults due to reliability degradation becoming so important in current process
technologies?

4.2 What are the main drawbacks of existing fault tolerant techniques?

4.3 Do you think that total power consumption is more important for device architects
compared to the power density?

4.4 Why thermal stress, and consequently aging phenomena, is more crucial in 3-D
NoCs, as compared to the conventional 2-D NoCs?

4.5 Can you describe the “Bit Energy” model?

4.6 Can you describe the energy model based on “packets” and “hops”?

4.7 What are the main reasons for wear-out phenomenon?

4.8 Mention the most important reliability degradation mechanisms for IC. Is there
any common parameter for these mechanisms that highly affect reliability degrada-
tion?

4.9 What is the fault, error and failure?

4.10 Describe the three classical fault models for digital circuits and busses.

4.11 What are the differences between transient, intermittent and permanent faults?

4.12 What is a fault tolerant system?

4.13 Is it possible to “transform” a conventional system to fault tolerant? If yes,
please mention how is this possible.
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4.14 What are the advantages and disadvantages of applying fault tolerant techniques
to software and hardware level?

4.15 Can you define the Mean Time Between Failure (MTBF) rate?

4.16 Can you define the Mean Time To Repair (MTTR) rate?

4.17 How is it possible to define the availability of a system?

4.18 Can you enumerate and describe the five key elements in a comprehensive
approach to fault-tolerant design?

4.19 How is it possible to apply fault tolerance at different layers of abstraction?
Give an example.

4.20 Where is applicable the error control coding?

4.21 How is it possible to apply power and energy savings at different layers of
abstraction of NoC-based architectures?

4.22 Is it feasible to improve reliability of NoC-based architectures through careful
mapping? If yes, please describe at least two different approaches.

4.23 Is it feasible to improve reliability of NoC-based architectures by employing
different routing algorithm? If yes, please describe at least two different approaches.
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Chapter 5
NoC-Based System Integration

Abstract Integrating the NoC subsystem with the core in an MPSoC is hardly
trivial. It requires the design of complex NIs as well as tackle the problem of clock
distribution, which requires appropriate synchronizers if the system clock cannot be
distributed without skew as is often the case. The synchronizers must be reliable
and yet minimize additional latency. Moreover, careful floor-planning is required
to achieve good performance. Finally, any multi- and many-core environment must
also efficiently solve the problem of cache coherence and therefore the NoC must
support and even facilitate cache coherence mechanisms.

5.1 NoC Interface Design

The Network Interface (NI) is the logic required to connect the nodes to the NoC.
Unlike routers which can be similar or even identical, NIs can differ significantly
depending on the nature of the node, which can be a processor, memory, custom logic
dedicated hardware etc. Using a NI allows IPs and communication infrastructure to
be designed independently [22, 29]. One end of a NI is connected to a router using
the selected flow control protocol (see Chap. 3) while the other end is connected to
the node IP. Since most IPs are designed to communicate through a bus, the NI uses
a bus interface. There is a number of standard bus specifications to this end, such
as OCP (Open Core Protocol) [27], VCI (Virtual Component Interface) [34], the
AMBA family of buses such as AMBA AHB [2], AMBA AXI (Advanced eXten-
sible Interface) [3] for performance and low power, AMBA ACE for full cache
coherency between processors and AMBA ACE-Lite for I/O coherency as well as
custom buses [33].

However, the NI is not merely a protocol adapter from a processor bus to a
router port. It must provide services at the transport layer in the ISO-OSI reference
model [29], because this is the first layer where offered services are independent
of the network implementation. This is critical in order to decouple communica-
tion from computation [22, 30], allowing independent design and reuse of node IP
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modules and communication infrastructure [19]. The NI must offer processing cores
the view of a shared memory system, and the network itself should be transparent.

The services that the NI must provide can be classified as adaptation services,
transaction reordering services, error and flow control services, route computation
services and upper layer services.

Adaptation services include packetization/depacketization, protocol conversion
and clock domain crossing. They are the absolute minimum services required of the
NI so that data can be sent and received through the NoC subsystem.

Transaction reordering services are needed in the case protocols allow out-of-order
reception of packets or even flits. The NI must place flits and/or packets in proper
order before forwarding them to the node. This requires increased buffering resources
and incurs a latency overhead.

Error and flow control services are used in the case of an unreliable medium. On
the receive path the NIs must perform error detection and/or correction and request
retransmission when required. On the transmit path, the NI must append error control
information. Furthermore, the NI must be able to handle cases when the flow control
protocol indicates that injected packets cannot be accepted by the router due to
congestion.

Route computation is required in the case of source routing. Unlike distributed
routing where the NI must only append the packet destination address, in source rout-
ing the NI must also calculate the route according to the selected routing algorithm
and append the routing information to the packet header.

Upper layer services include cache coherence, bus transaction conversion to mes-
sages, etc. They can be implemented in software, but there is increasing tendency of
migrating them to NIs for increased performance.

Supporting all these services can lead to large area NIs. In Steenhof et al. [31],
a TV companion chip was redesigned with a NoC as the interconnect fabric, and
78 % of increase in chip area was proved to come from the NIs. Furthermore, the
NoC-based version featured an increase of 4 % in total area compared to the original
implementation. In the xpipes based system in [1], more than half of the NoC area
is due to NIs. After extensive research focusing mostly on router design and opti-
mization, attention has turned to NI design fairly recently. In order to save area, NI
sharing among nodes was proposed in [14] and [4]. The basic concept is illustrated
in Fig. 5.1. An arbiter is inserted between the PEs and the common NI, appropriately
multiplexing transmit data and demultiplexing receive data.

Other aspects of NI design have also been addressed such as latency [23] and
power consumption [8].

5.1.1 Message, Packet and Flit Format

The most essential function of the NI is packetization before transmission and
de-packetization after reception. Before NI design can begin message types, packet
and flit format and size must be determined according to the system requirements.
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A typical packet format is shown in Fig. 5.2. It is generally composed of three
parts, namely header, payload and tail. The header contains the necessary routing
and network control information. In the case of distributed routing the information
required is the destination and source addresses while in the case of source routing
the complete routing information is written in a routing field. In the case of variable
packet size a length field is also common.

The payload data comes from the IP. It includes a control field, which encapsulates
control information such as bursts, and the data field which contains the actual address
and/or data.

The tail typically includes the sequence number and error control fields such as
hamming code or CRC fields are appended.
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Studies on packet and flit size show that generally, increasing packet size reduces
the cache miss rate, since more cache locations can be updated with fewer pack-
ets [12]. On the other hand, it increases miss penalty since more data must be fetched
from the main memory in order to update the cache block [12].

In general the types of packets in an an MPSoC are [12]:

1. Memory access request packet: The packet is induced by an L2 cache miss that
requests data fetch from memories. The header of this packet must contain the
destination address of the target memory (node ID and memory address) as well
as the type of memory operation requested (memory READ, for example). The
address of the L2 cache is in the header as well, as it is needed to construct the
data fetch packet (in case of a READ). Since there is no data being transported,
the payload is empty.

2. Data fetch packet: This is the reply packet from memory, containing the requested
data. The packet header contains the destination address of the packet (in this case
the node ID of the cache that requested the data). The data is contained in the
packet payload.

3. Data update packet: This packet contains the data that will be written back to the
memory. It comes from L2 cache that requests the memory write operation. The
header of the packet contains the destination memory address, and the payload
contains the data.

4. Cache coherence synchronization packet: This type of packet is induced by the
cache coherence operation from the memory. Packets come from the updated
memory, and are sent to all caches, each cache will then update its content if it
contains a copy of the data. The packet header contains the memory tag and block
address of the data. If the synchronization uses the “update” method, the packet
contains updated data as payload. If the synchronization uses the “invalidate”
method, the packet header contains the operation type (INVALIDATE, in this
case), and the payload is empty.

5. I/O and interrupt packet: This packet is used by I/O operations or interrupt oper-
ations. The header contains the destination address or node ID. If data exchange
is involved, the payload contains the data.

Messages roughly correspond to bus transactions such as request and response.
For example the data in a burst bus transaction together with the bus control signals
can be packed into a message. (See AXI overview in subsection 5.1.2).

5.1.2 Basic Network Interface Design

Nodes in MPSoCs can be broadly classified as master and slave IPs. Master IPs such
as processor cores generate request transactions and receive responses, while slave
IPs such as memories receive requests and send back appropriate responses. Master
IPs are connected to initiator NIs. Initiator NIs convert IP request transactions such
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as memory fetches into NoC traffic, and translate the packets received from the NoC
into IP response transactions. On the other hand, target NIs are connected to slave
IPs and must translate requests from the NoC and generate responses to the NoC.
More specifically the relationships between nodes, protocols and packets is shown
in Fig. 5.3.

The basic block diagram of a NI is shown in Fig. 5.4. For both initiator and
target NIs two domains can be distinguished “vertically” namely the Shell which
is IP-specific, and the Kernel which is NoC-specific, in order to allow indepen-
dent design and reuse of IPs and routers. The kernel is responsible for packetiza-
tion/depacketization, clock domain crossing, flow and error control. The shell is
responsible for transaction reordering and higher-layer services. It is possible for
multiple shells to share a single NI kernel [14].

Similarly, the NI can be “horizontally” split into a transmit and a receive path.
The transmit path has the local node as source and the network as destination, while
the receive path has the network as source and the local node as destination.
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Along the transmit path, the IP-specific interface receives data from the node
IP, splits it into packets and flits appropriately, creates the packet header appending
the destination address or routing information, and sends packets to the shell-kernel
interface. The kernel reads pending packets, calculates and appends error control
information and sends it to the NoC-specific interface which implements the flow
control protocol to send data to the attached port of the local router.

On the receive path, the NI accepts a packet after exchanging flow control infor-
mation, reorders packets if necessary, checks the packet for errors, strips header and
tail information and forwards the payload to the node according to the local bus
protocol.

IP-Specific Interface

The IP-specific interface is responsible for exchanging data with the IP. This usually
means generating and responding to bus transactions according to a specific protocol.
It is commonly implemented as a wrapper in the HDL file hierarchy. As already
mentioned, common standard bus protocols are OCP and the AMBA family. They
are reviewed here briefly in order to discuss certain considerations in the NI design.

5.1.2.1 OCP Overview

OCP features three different burst models, namely precise burst, imprecise burst and
single request multiple data burst. Specifically, in a precise burst the burst length
is known when the burst is sent. Each data word is transferred as a normal single
transfer, where the address and command are given for each data-word, which has
been written or read. In an imprecise burst the burst length can change within the
transaction. A signal called MBurstLength shows estimation on the remaining data
words that will be transferred. Each data word is transferred as in the precise burst
model, with the command and address sent for every data word. Finally, in a single
request multiple data burst the command and address fields are only sent once. That
is in the beginning of the transaction. This means that the destination core must
be able to reconstruct the whole address sequence, based on the first address and a
MBurstSeq signal.

5.1.2.2 AMBA AXI Overview

AXI is the third generation of AMBA interface, first defined in the AMBA three
specification. In the latest AMBA four specification [3] it features three types of
interfaces:

1. AXI4 for high-performance memory-mapped requirements.
2. AXI4-Lite for simple, low-throughput memory-mapped communication (for

example, to and from control and status registers).
3. AXI4-Stream for high-speed streaming data.
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The AXI and AXI-Lite standards specify a five-channel interface. A read address
and command channel (ARADDR), a read data channel (RDATA), a write address
and command channel (AWADDR), a write data channel (WDATA) and a write
response channel (BRESP)

AXI4 allows a burst transaction of up to 256 data transfers, while AXI4-Lite
allows only 1 data transfer per transaction (bursting is not supported).

The AXI4-Stream protocol defines a single channel for transmission of streaming
data. The AXI4-Stream channel is modeled after the Write Data channel of the
AXI4. Unlike AXI4, AXI4-Stream interfaces can burst an unlimited amount of data.
There are additional, optional capabilities described in the AXI4-Stream Protocol
Specification. The specification describes how AXI4-Stream-compliant interfaces
can be split, merged, interleaved, upsized, and downsized. Unlike AXI4, AXI4-
Stream transfers cannot be reordered. The AXI bus interface has been adopted by
FPGA vendors such as Xilinx [18].

Supporting protocols with long and even dynamic bursts such as OCP and AXI4-
stream, the NI requires large FIFOs, especially the receive FIFO which may have to
support packet reordering.

5.1.2.3 AMBA ACE Overview

The AMBA four ACE protocol [3] aims at supporting cache coherence (see subsec-
tion 5.1.3.2. It is based on a five-state cache model. Each cache line is either Valid
or Invalid, meaning it either contains cached data or not. If it’s Valid then it can be
in one of four states defined by two properties. Either the line is Unique or Shared,
meaning it’s either non-shared data, or potentially shared data (the address space is
marked as shared). And either the line is Clean or Dirty, generally meaning either
memory contains the latest, most-up-to-date data and the cache line is merely a copy
of memory, or if it’s Dirty then the cache line is the latest most up-to-date data and
it must be written back to memory at some stage. The one exception to the above
description is when multiple caches share a line and it’s dirty. In this case, all caches
must contain the latest data value at all times, but only one may be in the SharedDirty
state, the others being held in the SharedClean state. The SharedDirty state is thus
used to indicate which cache has responsibility for writing the data back to memory,
and SharedClean is more accurately described as meaning data is shared but there is
no need to write it back to memory.

The ACE states can be mapped directly onto the MOESI cache coherency model
states. However ACE is designed to support components that use a variety of internal
cache state models, including MESI, MOESI, MEI and others.

ACE adds three more channels to the AXI bus standard for coherency transactions
and also adds some additional signals to existing channels. The ACADDR channel
is a snoop address input to the master. The CRRESP channel is used by the master to
signal the response to snoops to the interconnect. The CDATA channel is output from
the master to transfer snoop data to the originating master and/or external memory.
The ARTERIS FlexNoC [24] supports the AMBA ACE interface.
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5.1.2.4 Packetizer/depacketizer

Packetization includes converting a bus transaction into message(s), splitting a mes-
sage into packets as well as creating and appending the header and tail fields of each
packet. The basic block diagram of the packetizer/depacketizer is shown in Fig. 5.5.

One of the most important functions of the NI is to calculate the network address or
node identifier when sending a packet from the bus transaction. In the case of source
routing the NI also calculates the exact route and encodes the information for each
hop in the header. To the software running on a processor node, the memory is seen as
a single contiguous address range starting at a specific offset. In a NoC environment,
the physical memory may be distributed to several nodes. When a program requests
data from a specific physical address, the NI must identify the network address of
the physical memory as well as the address within that memory.

The header calculator must translate the address requested by a processor to
memory transaction (read or write) to the network address of the memory node,
which must be included in the header. In the case of source routing the entire routing
path is included, while in the case of distributed routing the destination address is
sufficient. The payload includes the memory physical address, the data to be written
in the case of a memory write operation and additional control information such as
burst mode or byte enable. In the case of out-of-order reception of packets or flits, a
sequence number must be included. The tail includes the error control information
that must be calculated in the destination NI and checked. In the case of end-to-end
error control the transmitter NI must keep a copy of the sent packet and delete it only
upon reception of an acknowledge message from the receiver.

Fig. 5.5 Packetizer/
depacketizer diagram
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Depacketization requires checking the incoming packet for errors, reordering
packets if necessary, stripping the header and tail fields, and assembling messages
from packets. Finally, the message must be converted to a valid bus transaction.

Alternatively, packetization/depacketization can be done in software. The authors
in Bhojwani and Mahapatra [5] studied the impact of the packetization implementa-
tion on area, latency, complexity, and flexibility. Three packetization schemes were
examined: (1) in software and (2) in hardware on core, and (3) in a wrapper. Soft-
ware implementation results in high latencies and an increase of code size. On-core
hardware packetization has a 13 K gates area overhead and a moderate latency of
10.8 ns. A hardware wrapper implementation has the lowest area overhead, equal to
4 K gates, and the lowest latency of 3.02 ns.

5.1.2.5 Shell-Kernel Interface

The interface between the shell and the kernel is typically one or more dual-port
FIFOs for each path. Since commonly the shell and kernel are in different clock
domains, the FIFO, besides buffering, is used also for reliable clock domain cross-
ing [15]. For that purpose the each pointer used for reading/writing must be read by
the other clock domain as well. To prevent metastability problems two flip-flops are
typically used for each pointer and the pointers often count in Gray code [25] so that
only one bit flips at every pointer increment. This dual port FIFO synchronization
scheme is illustrated in Fig. 5.6. When designing a shell-kernel interface with sepa-
rate clock domains it should be a separate module in the design hierarchy according
to synthesis guidelines [21]. This applies to any other possible clock domain crossing
points. Furthermore, the flip-flops used for synchronization of the pointers should
be placed physically close to reduce the possibility of metastability occurring in the
second flip-flop [15].
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Fig. 5.6 Synchronization FIFO
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5.1.2.6 NoC-Specific Interface

The NoC-specific interface is an implementation of the flow control protocol to
transmit to (inject) and receive data (eject) from the router attached to the NI as
discussed in Chap. 3.

5.1.3 Advanced Network Interface Features

Another feature commonly required of NIs is support for error control. With devices
becoming increasingly unreliable, error detection and/or correction is featured in
modern NoCs while it was not considered in original NoC implementations. On the
transmit path, the NI must calculate and append the error control information to a
packet, while on the receive side the NI must calculate the error control information,
compare it to the information received and detect or correct errors accordingly.

5.1.3.1 End-to-End Flow Control

End-to-end flow control is desirable in order to regulate trafficglobally, while link-
level flow control regulates trafficlocally between routers as examined in Chap. 3.
Similarly to link-level flow control, end-to-end flow control ensures that no data is
sent from a source NI unless there is enough space in the destination NI buffer to
store it. it. Not using an end-to-end flow control scheme would lead either to dropping
packets at the destination or en route due to congestion. However, using exclusively
end-to-end flow control with no link-level flow control is not feasible.

End-to-end flow control can be implemented using credits similarly to credit-
based flow control discussed in Chap. 3. The source NI uses a credit counter to track
the empty buffer space of the remote destination queue for each channel which is
initialized with the remote buffer size. When data is sent from the source queue, the
counter is decremented. When data is consumed by the IP module at the other side,
credits are produced in a counter in the destination NI (credit) to indicate that more
empty space is available. These credits must also be sent to the producer of data to be
added to its credit counter. This approach was used in [17] and is illustrated in Fig. 5.7.

In Tang and Lin [32], a flow control strategy aiming at regulating the sending
packet rates using several injection levels according to network status (modelled
as the number of data flows sharing the channel)and not just destination NI buffer
space is presented. The proposed method requires obtaining the network status for
the whole source to destination path and transmitting it from the destination to the
source (instead of credits) using a dedicated control network.

In Lai et al. [23] instead of constantly tracking the empty buffer size in the target
NI by the source NI, the target NI periodically sends a control packet that reports the
available space to the producer of data. The source does not transmit pending data if

http://dx.doi.org/10.1007/978-1-4614-4274-5_3
http://dx.doi.org/10.1007/978-1-4614-4274-5_3
http://dx.doi.org/10.1007/978-1-4614-4274-5_3
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Fig. 5.7 End-to-end flow control

the available buffer size received from the destination is insufficient to store the data
pending transmission.

5.1.3.2 Cache Coherence

An important consideration for all multi-core architectures is cache coherence. The
cache coherency problem occurs when different processors in the SoC share data
stored in the main memory. When processor P1 modifies data shared with processor
P2, the copy of that data in the cache of processor P2 must be either updated or
invalidated, before a new access to it.

Maintaining cache coherence in a multi-processor environment at all times can
be difficult. Two basic cache coherence approaches exist, namely snoop-based and
directory-based. The former relies on processors “snooping” on each other’s address
requests, while the latter relies on maintaining a common directory of shared data.
Both approaches require additional states for the cache line than simply valid and
invalid. A popular cache coherence protocol for write-back caches called MESI was
originally proposed in Papamarcos and Patel [28]. It replaces the valid/dirty bit in a
cache line with four possible states that the data in the block can have in an MPSoC:

1. Modified: The cache has the only valid copy that is in the whole system. The data
which are in the main memory are invalid (out-of-date). A write-back operation
will change this state to Exclusive.

2. Exclusive: The cache has the only valid copy of the block, but it has not been
modified. The data in the main memory are valid. A read operation from another
processor will change the state to Shared.

3. Shared: Another processor can have the data into its cache memory and both
copies are updated.

4. Invalid: The data in the cache is not valid. Either the data the processor requests
are not in the cache (miss), or the local copy of these data is not valid because
another processor has updated the corresponding memory position.
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Depending on a write/read hit or miss and the state of the data in the cache
(modified, exclusive, shared or invalid) the state of the data must be updated according
to the state diagram of Fig. 5.8 and the appropriate action must be taken.

Variations of the MESI protocol also exist, such as the MOESI cache coherence
protocol which adds an additional state to the MESI protocol called the “owned” state,
which signifies that the processor is responsible for updating the main memory. Only
one processor may have data in the owned state.

Implementing a snoop-based cache coherence protocol is a significant challenge in
the NoC environment compared to bus-based communication which allows snooping
between processors. Furthermore, transactions such as invalidate and update are
naturally multicast, which many NoCs handle as unicast transactions. In Chaves et
al. [7] the authors proposed the use of multicast messages to reduce the number of
transactions to improve the performance of cache coherence protocols in NoC-based
MPSoCs. Results show that performance of some transactions is improved up to
32 % when using multicast messages.

The exploration presented in Girao et al. [16] shows that the amount of data on the
NoC for regular operations is much larger than the amount of data for cache coherence
maintenance for almost all the cache sizes. However, as the increase in cache size
leads to a decrease in the amount of data for regular operations, the amount of data for
cache coherence becomes more significant. Further exploration shows that for small
cache sizes, the amount of page replacement requests is the most responsible for the
cache coherence injected load due to the amount of cache misses and replacements
which increases as cache size decreases [16].



www.manaraa.com

5.1 NoC Interface Design 139

In Eisley et al. [13] implementation of the coherence protocol and directories
within the network at each router node was proposed. Moving the coherence direc-
tories from the nodes to the routers opens up the possibility of optimizing a protocol
with in-transit actions. Virtual trees, one for each cache line, are maintained within
the network in place of coherence directories to keep track of sharers The virtual
tree consists of one root node R which is the node that first loads a cache line from
off-chip memory, all nodes that sharing this line and intermediate nodes between
root and sharers Nodes of the tree are connected by virtual links Virtual trees are
stored in virtual tree caches at each router within the network Reads and writes are
routed towards the home node, if they encounter a virtual tree in-transit, the virtual
tree takes over as the routing function and steers read requests and write invalidates
appropriately towards the sharers instead.

A similar approach where, all directory caches are embedded within the router
was proposed in [9].

In Walter et al. [36] a bus-enhanced NoC for supporting bus coherence was pro-
posed, based on the concept of using a NoC for high-throughput communication of
data and a bus for the low-latency, low-bandwidth communication of control infor-
mation between pairs of modules such as acknowledgements and invalidates.

5.2 Clock Distribution

Ideally, it would be desirable to have a completely synchronous NoC, i.e. all routers
clocked by the same clock, with no phase difference (skew) between routers. Unfor-
tunately, one of the main problems in today’s ASICs is to distribute efficiently a
skew-free synchronous clock over the whole chip, while a large part of the power
(about 70 %) is also consumed by the clock-tree [10].

The usage of fully asynchronous NoC implementations would eliminate the clock
distribution concern and would make designs more modular since timing assumptions
are explicit in the hand-shaking protocols. However, such an approach is not attractive
yet, since the existing design tools and IP libraries heavily rely on the synchronous
paradigm instead. As a result, middle ground solutions become more affordable in
the short run. The proliferation of clock domains in a single chip imposes the design
of reliable synchronizers to cross clock domains.

5.2.1 Globally Asynchronous Locally Synchronous (GALS)

This approach is based on the fact that while it may not be feasible to distribute a
global clock signal with acceptable skew, it is still possible to have a clock within a
limited area (or region). A GALS architecture consists of multiple regions, each with
the same clock, called clock domains, asynchronous to one another [20]. Usually,
the GALS approach in NoC architectures is implemented by assuming that each
switch/router is clocked with a different clock, all the same frequency, but not with
the same phase. Passing data from one router to the other requires an appropriate
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Fig. 5.9 Flow control with two flip-flop synchronizer

synchronizer in order to avoid metastability. Instead of using the FIFO synchronizer
shown in Fig. 5.6, if the clock frequency is the same, a simple two-flip-flop synchro-
nizer of Fig. 5.9 can be used reliably [15] together with an ACK/NACK control flow
scheme. Unfortunately, even this synhchronizer will introduce a two-cycle latency.

5.2.2 Mesochronous

An improvement to synchronous communication scheme is the usage of mesochro-
nous synchronization. Based on this approach, a single clock signal can be distributed
to the various macro-cells in the design with an arbitrary amount of space-dependent
time-invariant phase offset (i.e., the skew). Due to the fact that NoCs intricacies of
skew-controlled chip-wide clock tree distribution, there is an increasing interest for
mesochronous synchronizers. Consequently, the mesochronous synchronization can
be viewed not just as an enabler for architecture scalability, but also as a means of
eliminating (or relaxing) the skew constraints in the clock tree synthesis process, thus
resulting in frequency speed-ups, power consumption reductions and fast back-end
turnarounds [35].

Unfortunately, mesochronous synchronizers come with their own set of problems.
For instance, an implementation of mesochronous communication is based on delay-
ing either data or the clock signal so to sample data only when it is stable. However,
the implementation of such a solution requires components often not available in a
standard-cell design flow (e.g., configurable digital delay lines) or explicitly targeting
full-custom design (e.g., Muller C-elements).

In addition to that, sometimes the synchronization latency, which impacts not just
communication performance but has architecture-level implications as well, becomes
a serious problem. In order to overcome this limitation a latency-intensive receiver
architecture has to be designed, resulting in a more costly system overall.

A common mesochronous synchronizer is presented in Ginosar [15] and shown
in Fig. 5.10. Alternatively, a FIFO synchronizer can always be used.
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Fig. 5.10 Mesochronous synchronizer

5.2.3 Multisynchronous

Another consideration concerning mesochronous synchronizers is that often
mesochronous clock domains can become multisynchronous due to temperature and
voltage changes. This means that the relative phases of the two clocks drift slowly,
and therefore the phase difference is no longer constant. Obviously, the general
two-clock FIFO approach is valid in this case also. Alternatively, a mesonchronous
synchronizer must be modified to monitor and adapt to the clock phase change [15].

5.2.4 Asynchronous

An asynchronous NoC would completely eliminate clock skew considerations. Such
an approach is the Mango clockless NoC [6]. However, since the IPs are synchronous,
the NI must perform reliable crossing from the synchronous to the asynchronous
domain and vice-versa. Another consideration is the fact that, as mentioned, EDA
tools don’t fully support asynchronous design practices.

5.3 NoC-based System Floorplanning

Floorplanning a NoC-based system must be done efficiently in order to reap the
benefits of network communication. Otherwise, long wires (links) may lead to unac-
ceptable delays. In systems with few cores, floorplanning can be done manually.
However, as the number of nodes rapidly increases, EDA tools are required to achieve
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a good solution. Generic placement and routing tools that consider the NoC merely
another component in the system may lead to poor results.

Traditional NoC design methodology that consists of generation of a symbolic
mesh, followed by system-level floor-planning to generate the final SoC architecture.
Since the symbolic mesh is generated without any knowledge of floor-planning, the
final architecture can result in large link length and corresponding link power con-
sumption. For the example shown in the figure, mapping and routing were performed
by assuming a 4mm inter-router distance, and there was a deviation of about 50 % in
link power consumption, and 80 % in wire length between the symbolic mesh, and
the mesh after floor-planning. With further shrinking of technology, and increased
contribution of link power to the overall power consumption, this deviation will result
in a significant error between the estimated, and actual power consumption of the
NoC.

One approach is to use floor-plan information in the topology synthesis phase. In
Murali et al. [26] This paper obtains a more accurate estimation of the link lengths by
integrating system-level floor-planning in the NoC design flow. A similar approach
is presented in Yu et al. [37], where In this paper, we integrate partition into floor-
planning to make use of physical information such as the length of interconnects
among cores. At post-floor-planning optimization, a heuristic method is used to insert
switches and a min-cost max-flow algorithm is used to insert network interfaces.
Finally, we allocate paths to minimize power consumption.

In 3-D NoCs, a 3-D 2-layer and 3-layer NoC architectures that utilize homo-
geneous regular mesh networks on a separate layer and one or two heterogeneous
floor-planning layers was proposed in de Paulo and Ababei [11].

Questions

5.1 What are the absolute minimum functions a NI must perform?

5.2 Name the types of packets in a NoC-based MPSoC.

5.3 What are the typical fields and sub-fields in a NoC packet?

5.4 Name the typical NI shell services.

5.5 Name the typical NI kernel services.

5.6 What are the relative advantages and disadvantages of mesochronous and GALS
architectures?

5.7 Which types of clocking schemes are used in NoCs? What are their relative
advantages and disadvantages?
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Laboratory Exercises

5.8 Design a wrapper between a NI and an OCP bus in VHDL or Verilog.

5.9 Design a wrapper between a NI and an ARM AMBA AXI bus in VHDL or
Verilog.

5.10 Design the FIFO synchronizer of Fig. 5.4.

5.11 Design the mesochronous synchronizer of Fig. 5.6.

5.12 Design a packetizer for an AMBA AXI burst node in a 4 × 4 mesh with
distributed routing. The tail should use parity for error detection.

5.13 Design a packetizer for an OCP burst node in a 4 × 4 mesh with distributed
routing. The tail should use CRC-32 for error detection.

5.14 Design an appropriate depacketizer for laboratory exercise 5.10.

5.15 Likewise for laboratory exercise 5.11.
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Chapter 6
NoC Verification and Testing

Abstract Verification and testing are tremendously costly steps in the design flow.
In today’s multi-million gate ICs the lion’s share of design time is spent verifying the
design against its specification. An inadequately verified design will lead to re-spins
that could make the difference between success and failure for a product. On the
other hand, manufacturing test must prevent defective parts from being shipped to
customers.

6.1 Introduction

The term verification is used to describe the process of functional testing, in other
words checking the design against its specification. The term testing, on the other
hand, usually refers to the process of the manufacturing test, assuming a correct
design [1]. Verification is performed against a model of the final implementation
(Table 6.1).

An important difference between verification and testing is that the model that
is being verified provides inherent observability and controllability, while the actual
circuit under test is usually difficult to control and observe. For example, an RTL
simulator allows forcing and observing all intermediate signals in the design hier-
archy, while the actual circuit is only controllable and observable through its I/O
ports.

6.2 NoC Verification

Verification is the process of demonstrating that a design meets its specification.
Since system specification starts at a high level of abstraction and is refined as
the design process goes down the abstraction levels, verification takes place in all

K. Tatas et al., Designing 2D and 3D Network-on-Chip Architectures, 147
DOI: 10.1007/978-1-4614-4274-5_6, © Springer Science+Business Media New York 2014
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Table 6.1 Verification and testing terminology

Concept Verification Testing

Design Design under verification (DUV) Design under test (DUT)
Equipment Testbench Tester/BIST
Input Stimuli Test vectors
Output Response Response
Success metric Coverage Yield

abstraction levels, verifying that each model of the system is correct. Therefore,
there is algorithm-level verification, system-level verification, RTL verification and
post-layout verification. It is also common to develop a working prototype of the
system in FPGA in order to use real inputs. Furthermore, verification is done across
design hierarchy levels. Typically a NoC-based MPSoC would be verified at the
basic component hierarchy level (router and NI verification), at the NoC hierarchy
level, and at the MPSoC hierarchy level. Given the distributed nature of the NoC as
well as its unique position in the MPSoC and its potential for design reuse, it must
be verified to a very high degree of confidence.

Since the register-transfer level is the highest abstraction level from which gen-
erally a circuit implementation can be automatically generated using EDA tools, a
large part of the verification effort is spent at the RTL level.

RTL Verification of a complex NoC-based SoC requires the development of elab-
orate object-oriented self-checking test-benches and represents a significant amount
of the design effort [2]. This chapter only covers RTL verification.

6.2.1 Verification Fundamentals

As already mentioned, verification is the process by which the designer demonstrates
that a Design Under Verification (DUV) conforms to its specification. Verification
is done by applying stimulus to the DUV and checking its response against its spec-
ification. It is most often practically impossible to prove that a design meets its
specification requirements, due to the most often infeasibly large number of possi-
ble input stimuli that must be applied for exhaustive verification. However, a single
counterexample is enough to disprove that the DUV is functionally correct.

Therefore, the verification engineer is not aiming at exhaustively testing a complex
DUV but to achieve functional coverage, meaning to test all DUV features through
the testbench. Since, exhaustive testing is most likely infeasible even for specific
features of the DUV instead of all possible input combinations, the challenge in the
verification process is to achieve coverage of all design features with the minimum
set of input stimulus and simulation runs.

The structure used to apply the stimulus and check the result is called testbench,
and is essentially a wrapper around the DUV as shown in Fig. 6.1. A testbench can
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Fig. 6.1 Testbench

DUV

TESTBENCH

STIMULUS RESPONSE

be as simple as applying the truth table combinations to some simple glue logic to
as complex as 4 − 5× the lines of RTL code of the DUV of object-oriented code.

Testbenches can be classified according to the stimulus provided as:

• Directed: The stimulus is a set of test vectors required to test specific func-
tional requirements. Directed stimulus is commonly used to verify initial system
response. However, functional coverage with directed stimulus is too time-
consuming, if at all feasible. Furthermore, since directed testing relies on testing
specific requirements, it will not catch the bugs the designer has not thought of.
However, directed testing is useful for simple low-level components in the hier-
archy, or in order to identify a bug that has been caught by constrained-random
verification.

• Constrained-random: The stimulus is a set of valid transactions with random
data. For example, valid control signals and timing bus transaction, with ran-
dom addresses and data, for example valid NoC headers with random source and
destination addresses and random payloads. Constrained-random verification is
very useful because it can catch bugs the designer has not thought of, but it should
be mentioned that by walking the space of possible inputs at random may never
reach some specific inputs even after long simulation times.

• Realistic: Realistic stimulus in NoC testing requires traces of actual packets and
messages. The advantage of this stimulus is obvious, however it is often difficult
to generate.

An important concept and metric for successful test-benches is coverage. The
test-bench must cover all DUV features as documented in its specification, based on
the requirements in the verification plan. Modern simulators provide certain coverage
metrics such as statement coverage, branch coverage and state coverage.

An example of statement coverage output using ModelSim is shown in Fig. 6.2.
The output shows both the percentage of statements that were covered and the actual
statements that were missed to help guiding the verification effort.

Obviously, high coverage does not ensure a bug-free DUV. It is, however, a metric
of how successful the test-bench was in sensitizing the DUV model. Low coverage
means that a large portion of the design functionality has not be tested at all.
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Fig. 6.2 Test-bench coverage

6.2.2 Verification Plan

The verification plan is a specification document used for verification. Verification
is usually performed using a bottom-up approach. The verification process should
be split to requirements and each requirement should be numbered and prioritized.
First-time success should be also documented in the verification plan. The conditions
which are considered outside the scope of the system should also be explicitly stated
in the specification document and the verification plan. Sample requirements for a
NoC system verification plan are shown in Fig. 6.3.

Fig. 6.3 Sample NoC test-bench requirements
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6.2.3 Test-Bench Creation for NoC

With verification becoming increasingly challenging, research efforts have concen-
trated on developing reusable, self-checking test-benches based on object-oriented
programming. Open Verification Methodology (OVM) and Advanced Verification
Methodology (AVM) are methodology examples.

The AVM [3] developed by Mentor Graphics comprises an open-source library
of modular, reusable verification components implemented in both System Verilog
and SystemC.

The OVM [4] is a methodology backed-up by an open-source library for functional
verification using System-Verilog from Mentor and Cadence. OVM combines the
features from mentor’s AVM and Cadence ERM Methodology. Its scalable to system
level verification. It is written in IEEE 1800 System-Verilog and therefore runs on
any simulator supporting the IEEE 1800 standard.

6.2.3.1 Testbench Structure

The traffic models used in the exploration step can be used in the verification process
also. They are classified as either realistic or synthetic. Specifically, realistic traffic
models are traces of application execution onto NoCs. On the other hand, the synthetic
traffic patterns corresponds to abstract models of packets exchanged between nodes
of the NoCs. In contrast to realistic traffic, which is representative of a more specific
class of applications, synthetic traffic is generated based on mathematical models.
Hence, it covers a broad class of applications executed onto NoC platforms. The
competitive advantage of incorporating synthetic models is that it allows a network
to be stressed with a regular and predictable pattern. However, since they do not
represent traffic from real-life applications, they cannot be employed for accurate
design-space exploration, whenever an application-specific NoC platform has to be
designed.

A general test-bench structure used in modern verification methodologies such as
AVM and OVM is shown in Fig. 6.4. This structure is applicable to NoC verification
as well. The test-bench comprises a number of verification components, namely the
generator, the agent, the driver the monitor and the checker or scorecard.

The generator is the highest layer of the test-bench. It is composed of classes which
aim at generating transactions for the DUV. In the case of a constrained-random NoC
test-bench, it should generate NoC transactions at random time intervals, from/to
random (but valid) nodes with random payloads.

The agent is the next layer down in the hierarchy. It should receive pending
transactions from the generator and create packets and flits according to each input
transaction. Those are then forwarded to the driver.

The driver is responsible of generating the bit-level stimulus for the DUV
according to the input received from the agent. It essentially generates appropriate
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Fig. 6.4 NoC test-bench structure

waveforms for the NoC routers flow control signals in order to convert the packets
and flits received from the agent into valid inter-router transactions.

The receiver is responsible for receiving the flits from each router according to the
flow control outputs in the NoC and encapsulating them back into flits, then packets
and, finally, transactions.

The response calculator generally calculates the DUV response to the provided
stimulus at a higher abstraction level. In the NoC environment this is fairly straight-
forward since the payload and destination addresses are known to the agent. However,
it is harder to calculate the packet flight time for the traffic conditions generated by
the test-bench. A solution to this would be to also create a test-bench with exactly
the same scenario as the one run in the high-level NoC simulator (same injection rate
and traffic type).

The checker is responsible for comparing the NoC input and output transactions
and check if the data were received from the expected node and within the expected
time interval.

Obviously creating such elaborate test-bench structures requires significant design
effort, however the coverage that can be achieved in relatively short simulation time
is well worth it.

6.2.4 NoC Prototyping

Another step in the verification process after simulation is building a working pro-
totype of the system or subsystem. The prototype is only required to satisfy func-
tional requirements (specifications) and not performance and power constraints. It is
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Table 6.2 Verification framework comparison

Framework NoC generation IP support Simulation support Prototyping Case study

[5] Yes Partial Yes Yes 4×4 NoC
[6] Yes No Yes Yes
[7] Yes Yes Yes Yes 3 PEs with ring,

2 × 2 mesh,
single router topologies

[10] Yes Yes Yes Yes 3 PEs with single router

typically built using FPGA technology, often requiring multiple devices to emulate
the final multi-million gate SoC.

Due to the time-consuming and error-prone process of NoC verification and pro-
totyping, developing a framework of EDA tools that automates NoC generation,
testbench creation, simulation and analysis is important in order to reduce system
development time. A few attempts at developing a more or less complete NoC gener-
ation/verification/prototyping framework have been made. Specifically, The MAIA
framework [5] provides parametric NoC generation for three NoC topologies (mesh,
torus and star) together with appropriate testbenches and simulation/analysis scripts.
The ATLAS framework [6] for NoC generation and evaluation contains tools for NoC
generation, traffic generation, simulation, traffic and power evaluation. An integrated
flow to automatically generate a configurable NoC-based multi-processor SoC has
been proposed in [7].

Other research efforts have concentrated exclusively on the prototyping frame-
work/platform part of the NoC verification problem. In [8] a 4 × 4 mesh network
without processing cores is implemented. In [9] an FPGA NoC prototyping frame-
work that utilizes the partial reconfiguration capabilities of an FPGA to reduce
re-synthesis time for accelerating the emulation process was introduced and a 2 × 2
mesh was used as case study.

A hardware-software emulation framework implemented on an FPGA has been
presented [10]. It is shown that the FPGA-based emulation framework achieves
four orders of magnitude of speedup over a software simulator. The complete NoC
architecture with three cores, a single router and two network interfaces was emulated
on an FPGA. In [11], a multi-FPGA NoC emulation framework was proposed.

Table 6.2 compares the features of some of the frameworks discussed above.

6.3 Testing Fundamentals

The objective of the testing process is to cover possible defects while minimizing the
testing time and area overhead (see Sect. 6.3.4). As in verification, the test vectors
must be chose wisely, since exhaustive testing is not feasible. Defects themselves
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cannot be tested, therefore fault models are used, so that the test can capture the effect
of the defect on the circuit behavior.

6.3.1 2-D IC Defects

Defects can be broadly classified as bridging defects (short circuit) and open circuit
defects [12]. A bridging defect is an unintentional connection between two or more
circuit nodes. The bridging effect introduces a bridging resistance Rshort between
the shorted nodes, which if it is lower than a critical resistance, the circuit will fail
either in terms of logic levels or sensitivity to noise.

Bridging defects can be intra-transistor (gate oxide shorts), inter-transistor (com-
binational or sequential circuit shorts) and power rail shorts. Combinational circuit
shorts may or may not create feedback.

An open circuit defect is an unintended break in interconnect lines. The open
circuit can occur in either metal, polysilicon or diffusion regions. Their main effect
is that one circuit node ceases to be driven by any gate and may be left floating. The
final voltage of the floating node depends on the size of the crack and the amount of
charge present in the floating node [12].

6.3.2 3-D IC Defects

As more dies are integrated into a 3-D IC, the yield of the final product falls off
exponentially, since a single faulty die can render the entire IC defective, even without
defects in the vertical links. For that reason, testing of each die before bonding
was proposed in [13]. This can be very challenging since a functional unit may be
partitioned between layers, making controllability and observability difficult.

Furthermore, the new 3-D processing steps cause new defects. TSV processing
only allows for limited TSV heights and aspect ratios [14]. Wafers need to be thinned
down before bonding to another die which can cause new defects such as degrada-
tion of some I–V characteristics, shifts in device performances, and limited yield
losses [15].

Thermal dissipation and thermo-mechanical stress are other possible causes of
defects. The heat has no means of escape in densely packed stacks of thinned dies,
with the danger of causing faults in various dies, especially heat-sensitive ones such
as DRAMs.

Fortunately, these additional faults, unique to TSV-based interconnects are rather
similar to the faults normally considered for wiring interconnects [16] such as opens,
shorts, and delay faults, even though the nature of the underlying defects is different.
Therefore, test engineers can use the existing large body of work with respect to
test pattern generation for detecting hard open and short faults through a set of test
patterns that grows only logarithmically with the number of interconnects [17–20].
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6.3.3 Fault Modeling

Circuit defects such as shorts, opens, cracks etc. cannot be used directly for test
generation and diagnosis. Therefore, the defects are represented by fault models.
The most common fault models used in manufacturing test are the following:

• Single Stuck-at Fault Models: It is one of the first introduced fault models which is
common even now. In this model, faults are represented as a node having a fixed
logic value (stuck-at-0 or stuck-at-1). Such a kind of fault is permanent, while the
basic functionality of the circuit is not altered. The main advantage of employing
such model is its conceptual simplicity. Current research efforts still examine the
single stuck-at fault model. However, this model does not provide an accurate
representation of the physical defect’s behavior [21].

• Bridging Fault Models: It models two signals shorted together. Such kind of fault
may change the circuit’s sequential behavior, while the voltage level at the end of
two shorted wires can massively depend on the location of the bridge. A problem
with this kind of fault is that the effect cannot be predicted in advanced. For
instance, a strong driver will for sure overpower a smaller transistor if their outputs
are shorted but two equally strong drivers will probably generate an unpredictable
value as their common output.

• Open Fault Models: Similar to bridging faults, this kind of defect is common in
CMOS processes, since the latest architectures incorporate more metal layers (and
hence much more vias). Additionally, the copper interconnects make reliability
issues even more critical [22]. This kind of fault fixes the gate of a transistor at the
open value, and hence the transistor cannot be switched on.

6.3.4 Design for Testability

Tests can be applied either offline or online. The equipment that applies the test
vectors and checks the response can be either external or internal. The second method
is known as Built-In Self-Test (BIST). The advantage of BIST techniques is their
speed, while their disadvantage is the generally significant area overhead, since the
test structures are included in the chip. Obviously the BIST itself is not immune to
defects.

6.4 NoC Testing

Like all other SoC components the NoC is susceptible to manufacturing defects and
must be tested. Therefore, testing a NoC-based system includes testing of embedded
cores and testing of the on-chip network. Testing of embedded cores is similar to
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conventional SoC testing, while the NoC can be considered as just another core of a
SoC, but it is also special in two ways:

1. It is often composed of many identical sub-cores (routers and network interfaces),
and

2. It occupies a privileged, central position in the SOC, by virtue of its inter-
connecting role. Testing of on-chip network includes testing of interconnects,
switches/routers, input/output ports, and other mechanism other than the cores.

NoC-based SoCs require the application of a number of test methods from SoC,
memory and FPGA domains, such as functional test, scan test, logic and memory
BIST and testing of wires and switches [23].

6.4.1 BIST Structures for NoC

A number of BIST structures for NoC architectures have been proposed [24–27].
In [24] a four-step composite test strategy and corresponding BIST structures are
presented. The inter-router links are checked first, because they are used as Test
Access Mechanism (TAM) for the following tests. The second part of the test checks
all router FIFO buffers in the chip, the third checks the routing logic blocks in the
chip and the fourth checks the multiplexers at the output ports and the intra-router
links.

The BIST mechanism for testing the inter-switch links is shown in Fig. 6.5.
In [27] the authors proposed a built-in self-test/self-diagnosis procedure at start-up

of an on-chip network (NoC) for bi-synchronous communication channels. Concur-
rent BIST operations are carried out after reset at each switch, thus resulting in scal-
able test application time with network size. The key principle consists of exploiting
the inherent structural redundancy of the NoC architecture in a cooperative way for
the effective diagnosis and error detection. At-speed testing of stuck-at faults can
be performed in less than 4000 cycles regardless of their size, with an hardware
overhead of less than 30 %.

TX Router RX Router

TDG TED

Link wires

. .
 .

. .
 .. .
 .

Fig. 6.5 Link test BIST
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6.4.2 NoC as Test Access Mechanism

On the other hand, the NoC can be used to feed test vectors to the cores also [25]. This
has proven to be effective in reducing the routing overhead since NoC replaces test
buses. However, this approach is not without disadvantages [28]. The DFT wrappers
and test control are more complex due to the NoC protocols, testing time is higher
and reliability is lower due to the NoC sensitivity to soft errors.

Questions

6.1. What is the main difference between verification and testing?
6.2. What is the purpose of the verification plan?
6.3. List a few important verification requirements for a NoC design
6.4. What are the main types of defects in 2-D and 3-D ICs?
6.5. Describe the basic fault models used in testing?

Problems

6.1. A 5-port NoC router with ACK/NACK flow control has a phit size of 64 bits.
How many test vectors would be required to test it exhaustively?

6.2. Write a directed testbench in VHDL or Verilog for requirement R.

Projects

6.1. Write a complete verification plan for the NoC router of Prob. 1.
6.2. Write directed testbenches in VHDL or Verilog for the verification plan of

Prob.2.
6.3. Design in VHDL or Verilog the inter-router link test structure of Fig. 6.3.
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Chapter 7
The Spidergon STNoC

Abstract Spidergon STNoC is a state-of-the-art, low-cost on-chip interconnect that
plays a vital role in enabling multiprocessor system-on-chip by providing structure,
performance, and modularity. This chapter outlines topological and routing char-
acteristics of the packet-switched Spidergon STNoC, focusing on its low diameter,
vertex-symmetric, point-to-point chordal ring topology, and its low-cost, efficient
deterministic, shortest-path routing algorithm. It also describes interesting design
tools and discusses new Spidergon extensions toward fault tolerant routing.

7.1 Introduction

Multicore system-on-chip (MPSoC) technology has created exciting opportunities
for developing new advanced engineering products and market scenarios. In the heart
of current SoC technology, Moore’s law expresses a continually increasing CMOS
integration capability, thus challenging the electronic design automation community
for delivering new design methodology and tools that address an ever-increasing
system complexity with improved power-performance-price ratios and reduced time-
to-market requirements.

By embedding multi-dimensional regularity mechanisms within the topology
infrastructure, we enable full-scale integration of complex MPSoC. More specifi-
cally, MPSoC architectures can scale beyond traditional 32 nm processes using a
packet-switched network-on-chip (NoC) design methodology with a pseudo-regular
fabric that helps resolve manufacturing problems due to increased design complexity
and growing variability and achieve higher yields [3, 5, 22, 28, 37, 38, 48].

Within this context, we explore structural regularity in architectural, topological,
and algorithmic features to simplify NoC and network interface (NI) realization
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and improve MPSoC concurrency using efficient routing, intensive communication
algorithms, and mapping mechanisms.

More specifically, in Sect. 7.2, we focus on the topological and routing issues
of the Spidergon STNoC architecture describe its network topology characteristics,
including design foundations, graph properties, and routing strategy. We also outline
the Spidergon STNoC design methodology, indicating existing open source tools
that target design space exploration. In Sect. 7.3, we examine recent extensions
toward fault tolerant routing using network reconfiguration techniques at the network
interface. Finally, in Sect. 7.4, we provide conclusions and outline directions for
further work.

7.2 Spidergon STNoC Architecture

In the STNoC architecture, processing elements and routers are connected together
through a (patented) novel, regular, point-to-point topology, called Spidergon. The
architecture exploits IP reuse, modularity, and multiple levels of abstraction through
OSI-like network layering. The Spidergon STNoC is configured using four generic
building blocks appropriately interconnected to each other.

• The STNoC router is responsible for efficient and reliable data transfer of packet
flits within the Spidergon STNoC topology, the elements into which packets (and
messages) are logically divided. It implements the network and data link layers of
the NoC protocol, offering best effort latency, throughput and quality of service
(QoS).
• The network interface (NI) provides connectivity of individual IP by converting

subsystem transactions into packets transported within the NoC. It is the building
block to perform correct frequency and protocol conversions between the router
and connected IP cores. These cores, which are generic devices such as embed-
ded processors and memories, might act as initiators through a Master interface
or targets by means of a Slave interface. In the former case, they are responsible
for sending request transactions throughout the Spidergon STNoC and receiving
responses from elsewhere, while in the latter case, they can only receive transac-
tions and answer to them. Thus, in Spidergon STNoC, NI behavior depends on the
type of IPs (initiators and targets) connected to it. Fig. 7.1 illustrates a Spidergon
STNoC configuration with 12 routers, 8 initiators (noted as I ), and 4 targets (noted
as T ) connected to corresponding NIs. A generic NI initiator provides conversion
of initiator bus protocols into Spidergon STNoC packets which can be sent through
the packet switched network of routers, splitting them into many flits as necessary.
Once the flits from the initiator come to the NI relative to destination IP (Target),
they are decoded at the NI target. Target and initiator might operate at different
frequencies between them and the router and they can also have different bus sizes.
The NIs provides support to adapt to such differences. NIs facing toward initiators
or targets are almost similar in architecture except few details which do not change
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Fig. 7.1 Spidergon STNoC
configuration with 12 routers,
8 initiators and 4 targets

their global complexity and behavior. NI is also responsible to provide correctness
(completion) information on packet routing, e.g., concerning an initiator/target
transaction, and allows for IP reuse by hiding network-dependent aspects from the
transport layer, a critical benefit for reducing multicore SoC design complexity.
• The Spidergon STNoC network plug switch (concentrator) is a block for connect-

ing a generic number of IPs to a single Spidergon STNoC router. The multi-IP traf-
fic injected in the network is concentrated (and arbitrated), while traffic extracted
from the network is split to the proper IP.
• The physical link is responsible for the actual propagation of the signals among

the network routers and also to/from external IPs and subsystems through the NIs.
The choice of a physical link technology, e.g., serial versus parallel or synchronous
versus asynchronous, involves tradeoffs between clock distribution area, on-chip
wiring and required chip area.

The switching strategy, flow control, and routing algorithm are fundamental func-
tions of the NoC topology used to establish reliable and efficient communication
[14–16].

Spidergon STNoC supports wormhole switching, i.e., a packet is further subdi-
vided into flow control units (flits), with each flit having unique flow control [2].
Thus, the rest of the packet flits follow the same path reserved for the header. This
idea drastically reduces the amount of network buffering, while making the latency
for congestion-free (cut-through) communication almost independent of the distance
between the source and destination [12].

Flow control refers to the scheduling policy for resolving conflicts during packet
traversal. Thus, flow control deals with fair allocation of buffer and channel resources,
and packet buffering, dropping, or deflection. We distinguish between link-level flow
control dealing with managing short-term imbalances, e.g., through Request/Grant
protocol or threshold-based (watermark) link protocols, and end-to-end flow control
dealing with packet scheduling, and admission control, i.e., acknowledgment-based,
credit-based, or threshold-based protocols.

The current Spidergon STNoC link-level flow control protocol is very simple.
The first flit is transmitted according to credit-based hop-by-hop flow control which
completely avoids flit dropping and retransmission. A simplified description of the
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protocol is as follows. Each physical link of a router consists of two unidirectional
data channels: upstream (US) and downstream (DS). Each transmitted flit on the US
channel of any router is always accepted by the DS channel of the following router
(or network interface), since there is always enough buffer space. The protocol works
by automatically setting an initial number of credits in the US channel, equal to the
input buffer size of the DS channel it communicates with. Since the US interface
transmits a flit only if the connected DS channel can accept it, there are no pending flits
on the link wires. This approach also allows virtual channel flit-level interleaving, so
that separate virtual networks can share the same physical link. This fact together with
the implementation of output queues on the US physical ports enhances performance
by avoiding head-of-line blocking effects. The input buffer in the DS interface is a
small FIFO, which stores the incoming flits of packets traveling on the link on
the specific VN. Its depth is dimensioned according to the credit round-trip delay
to guarantee maximum throughput. Finally, notice that crosspoint output queueing
(separate output queue for each input port) and no output queueing are alternatives
for high performance communication or low cost solutions, respectively. A quality
metric for this scheme is the round-trip credit delay which is defined as the minimum
time between two consecutive credits for the same buffer location. Only once the
grant signal is set, the second flit may be sent; this allows the router to arbitrate the
output queue requested by this packet. If space is available, the packet locks that
queue and the second flit is accepted. From this point on, flow of subsequent flits is
stopped only if the queue becomes full.

For end-to-end flow control, Spidergon STNoC supports two bus protocols at the
network interface (NI): the Amba AXI4 protocol, as well as the STMicroelectronics’
STBus Type3 protocol. This choice for STBus allows exploiting past user experience,
e.g., connection to existing proprietary IPs, or integration of hierarchical on-chip
communication architectures based on STBus clusters into a high-level NoC back-
bone. The NI implements “access” to the NoC, translating transactions into packets
that are exchanged within the network. The NI hides network-dependent end-to-end
aspects (such as message disassembly) within the transport layer of the connected
module.

7.3 The Spidergon STNoC Topology

The choice of NoC topology has a significant impact on MPSoC price/performance.
To reduce design and verification time for a wide range of applications, a simple,
regular topology with efficient buffer management, flow control, and routing, mech-
anisms has been proposed. The topology also provides efficient solutions for resolv-
ing different network problems, e.g., balance of virtual channels, quality of service,
protocol or message-dependent deadlock, and intensive communication.

Figure. 7.2 illustrates examples of previously proposed NoC topologies. These
topologies are usually compared based on theoretical metrics that affect routing cost
and performance, such as number of nodes, number of edges, vertex symmetry, net-
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Fig. 7.2 Examples of regular network topologies

Fig. 7.3 Spidergon topology and its planar layout

work degree, network size granularity, network diameter, average distance, network
bisection width, as well as embedding properties for common communication
patterns.

The main driving factor of the Spidergon STNoC design approach was to explore
the complex network design space in order to achieve a low-cost, high performance
hardware implementation. In this respect, Spidergon STNoC adopts two main topolo-
gies: a custom one used in the embedded systems (not discussed here), and a simple,
regular topology that could be used for chip multiprocessor architectures. Spider-
gon STNoC promises to deliver the best tradeoff between theoretical metrics and
final price/performance ratio, considering commercial realities of the SoC market.
The Spidergon topology is based on a bidirectional ring, with extra cross links from
each node to its diagonally opposite neighbor. Thus, each packet arriving at a non-
final node is forwarded in a clockwise, anticlockwise or cross direction. As shown in
Fig. 7.3, the Spidergon topology translates into a practical low-cost layout implemen-
tation (single crossing); notice that each square corresponds to a router connected
to a processing element. In general, chip area relates to edge bisection, while the
longest wire affects NoC latency.

The Spidergon topology is vertex-symmetric with a relatively small number of
links and constant (equal to 2) size granularity (called network extendibility). The
total number of edges in an N-node Spidergon is 3N

2 , while its diameter is N
4 . For

currently realistic NoC configurations with up to 60 nodes, the proposed graph has
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a smaller number of edges, and a smaller diameter than fat-tree, 2D-mesh or 2D-
torus topologies, leading to latency reduction for small packets, even if wormhole
routing is employed [31, 47]. For example, the diameter of a 4 × 5 mesh with 31
bidirectional edges is 7, while that of a 20-node Spidergon STNoC topology with 30
bidirectional edges is only 5. Hence, higher degree topologies do not provide signif-
icant benefits due to reduced performance for small, non-square, irregular networks;
this is especially true when mapping practical, non-random NoC application traffic,
e.g., multimedia traffic.

The Spidergon STNoC topology is a chordal ring that belongs to the family of
undirected k-circulant graphs, i.e., it is represented as G(N ; s1; s2; . . . ; sk), 0 ≤ si <

N , where si is an undirected edge between network node l and node (l + si ) mod
N . Chordal rings are circulant graphs, with s1 = 1 [6, 24, 25], while double loop
networks (also called double fixed-step graphs) are chordal rings, with k = 2. These
families of graphs have been theoretically studied as competitors to meshes and tori
in respect to graph optimality, i.e., minimum diameter graphs for a given number of
nodes and constant degree; see Moore graphs [51].

Within the class of circulant graphs, the Spidergon STNoC network connects
an even number of nodes N = 2n, where n = 2, 3, . . . as a bidirectional ring, in
clockwise, node i to node (i + 1) mod N and anticlockwise direction, i.e., node i
to node (i − 1) mod N . In addition, for each node there is a cross connection, i.e.,
from node i , 0 ≤ i < N to node (i + n) mod N . The Spidergon STNoC topology is
a fixed degree topology, thus the same type of router is used to compose the entire
network of a generic N .

Spidergon specializes to a basic Octagon topology, for n = 8. In fact, the STMi-
croelectronic’s Octagon network processor, based on a Cartesian product of basic
Octagon topologies with a processing element at each node (see Fig. 7.4), has been
proposed as an alternative to complex on-chip busses for high concurrency, low
latency network processors, able to meet OC-768 network processing speeds [10].

We next outline the Spidergon STNoC design approach starting with its theoretical
foundations.

7.3.1 Theoretical Foundations

The Spidergon graph as a circulant graph has a non-optimal diameter. However, due
to its constant bisection width (8), we have also examined chordal rings of constant
degree, for alternative NoC topologies with the following constraints.

• small diameter for less than 100 nodes;
• large edge bisection width that scales well;
• efficient (wire balanced) point-to-point routing without preprocessing;
• efficient intensive communication algorithms, including broadcast, scatter and

gather versions;
• good fault tolerance;
• efficient layout with short, mostly local (small chordal links) wires.
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Fig. 7.4 The ST Octagon topology

Searching for optimal chordal rings involves several tradeoffs and peculiarities.
For example, diameter and average distance metrics of chordal rings are not always
monotonically increasing and cannot be minimized together. Through a theoretical
graph exploration phase, we have identified interesting families of chordal rings. For
example, there exist degree 2 and 3 chordal rings with smaller diameter and higher
edge bisection than Spidergon. These graphs have simple routing algorithms, but
usually a non-constant (linearly increasing) network extendibility metric.

An example of these interesting NoC candidate topologies is the 3-circulant graph
shown in Fig. 7.5. This graph uses chords with s1 = ±1 and s2 = �

√
N� and achieves

a �√N� diameter (similar to torus) with a fairly simple Spidergon-like deterministic
shortest-path routing algorithm. The algorithm first routes packets forward using long
steps not overshooting their destination (by following s2 links in either direction),
and then uses backward or forward links to reach the target node. Since forward
and backward steps can be taken in any order, this routing algorithm has a very
high adaptivity factor. Moreover, assuming a synchronous communication model
optimal permutation routing very similar to point-to-point routing can be obtained
using L-shapes, i.e., a planar geometrical representation of 2-circulants [8, 12, 18].
More specifically, permutation routing a) first routes packets using a number of long
steps, and then b) routes packets using short steps, always assigning higher priority
to the packet that takes the longest distance; this can be implemented by extending
the packet structure with hop counter or address comparison mechanisms. Since all
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Fig. 7.5 Equivalent representations of an undirected 3-circulant

Fig. 7.6 Neato layout for
32-node spidergon (min
bisection is identified)

distances are different there is no extra queuing delay. Efficient broadcast, multicast
and intensive communication algorithms, e.g., multinode gather and many-to-few
routing can be designed using similar techniques, while also taking into account
traffic balancing.

In order to explore topological properties in alternative constant degree NoC
topologies (especially symmetric chordal rings) we have explored theoretical results
through the use of several available open source software packages targeting net-
work topology selection and visualization. Nauty [36] and metis [30] tools are able
to analyze graph theoretical properties and automorphisms, while neato can visualize
topologically equivalent graph vertices based on spring relaxation [41]; two vertices
are equivalent (identical display attributes), if there is a vertex-to-vertex bijection pre-
serving adjacency. For example, Fig. 7.6 shows the planar layout and limited bisection
of a 32-node spidergon. Nauty also determines the orbits that partition graph vertices
into equivalence classes, thus providing symmetry-related topological metrics. In
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addition, metis provides an extremely fast, multilevel graph partitioning embedding
heuristic that can also extract topological and scalability-related metrics, e.g. diam-
eter, average distance, in/out-degree, and bisection width. In fact, for small graphs
(N < 40 nodes), a custom-coded version of Lukes’s exponential-time dynamic pro-
gramming approach to partitioning provides an exact bisection if one exists [34]. For
larger graphs, metis partitioning uses fast heuristics to approximate a near-minimum
bisection width.

Graph embedding and corresponding partitioning techniques form a binding ele-
ment between parallel algorithms and architectural topology. In particular, graph
embedding (called simulation, emulation, or mapping) targets efficient task alloca-
tion or IP mapping. Task graphs express the necessary computation, communication,
and synchronization patterns for realizing a particular functionality. They provide a
generic framework for developing efficient parallel algorithms for new topologies
by porting existing strategies in existing topologies.

Embedding is also used for reconfiguring faulty networks, i.e., providing fault-
free physical sub-graphs in “injured” physical system graphs. In this approach, the
operating system hides the system graph and allows users to define virtual topologies.
Thus, when hardware redundancy is implemented, it is possible to maintain network
performance (bandwidth and latency) in the presence of a limited number of faults
without requiring fault-tolerant routing. For a given node expansion, the quality of
graph embedding is characterized by several metrics, such as dilation which mea-
sures latency overhead during point-to-point communication in the target graph, or
congestion which indicates edge contention. An embedding of Spidergon onto an
undirected chordal graph with node expansion and dilation one is shown in Fig. 7.7;
this embedding applies to any Spidergon graph of size n = 2k + 2, where k is an
integer.

Small dilation, expansion, and congestion embedding have been examined on
different topologies using Scotch [13, 54]. Scotch partitioning is faster than metis

Fig. 7.7 Isomorphism between Spidergon and an undirected chordal of size 14, with s1 = ±1, and
s2 = ±3 or -3 for odd-/even-numbered nodes
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Fig. 7.8 Various graphic representations for embedding finite elements onto different topologies
(different colors specify the different node mapping)

(and usually far better than other similar tools); it works in linear time to the number
of edges in the source graph and logarithmic time to the number of vertices in the
target graph. Moreover, Scotch provides graphical visualization of the computed
mappings based on a predefined geometry (see Fig. 7.8) and easily interfaces to
other partitioning or theoretical graph analysis programs, e.g., Metis or Nauty, due
to standardized vertex/edge labeling format.

7.3.2 Open Source System-Level Simulation in Spidergon STNoC

System-level design methodology focuses on the functionality and relationships of
the primary system components, separating system design from implementation,
thus providing rapid, high quality, cost-effective design in a time-critical fashion by
evaluating a vast number of complex architectural and technological communication
alternatives.

System-level design provides increased productivity through innovative design
methodology and tools focusing on higher levels of abstraction, where massive reuse
and algorithmic or architectural optimizations are possible. The general consensus
decision to elevate the abstraction level significantly above RTL by creating a system-
level TLM model (e.g., IEEE’s SystemC and TLM [53]) is becoming a real necessity
for new product conception, platform validation, and design space exploration. Sys-
temC increases the productivity of developing communication driver models through
the definition of a universal API providing a new design pattern that enables creation
and reuse of executable transaction level models across a variety of design environ-
ments and simulation platforms.

Executional specifications for the Spidergon STNoC router and network interface
has been developed using SystemC and OMNeT frameworks [43].

SystemC development was also supported by developing the open source
On-Chip Communication Network (OCCN) methodology and design framework
[9]. OCCN is a flexible, highly parameterized, object-oriented, user-friendly C++-
based framework consisting of an open-source, GNU GPL library, built on top of
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SystemC, aiming at NoC modeling at different levels of abstraction. In addition,
OCCN employs a multilayered NoC modeling methodology and defines a universal
API for NoC specification, modeling, simulation, and design exploration.

OMNeT is a flexible, highly parameterized, object-oriented, user-friendly, state-
of-the-art C++-based framework consisting of an open-source, GNU GPL library,
built on top of SystemC, aiming at NoC modeling at various levels of abstraction,
simulation, and design space exploration [43].

7.3.3 Custom Tools for Design Space Exploration

Besides the use of open source technology for topology exploration and embedding,
it is also interesting to outline the main concepts surrounding many innovative indus-
trial EDA tools designed to automate and enhance the design of a Spidergon STNoC
design flow. This sequence of complementary and modular tools define STMicro-
electronic’s proprietary Interconnect Design Kit (IDK) ecosystem aimed to support
specification and validation of a customized NoC architecture, while enabling the
exploration of a huge design space. As shown in Fig. 7.9, IDK consists of several
subtools that are combined into a single design product tool-chain.

• I-Put is used for optimally embedding application IPs described as task graphs
to Spidergon STNoC tiles described as architecture graphs. The tool is based on

Fig. 7.9 Custom Spidergon STNoC design tools
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simulation and obtains the best mapping of the IPs, assuming a frozen architecture
and use case scenario.
• Assuming a given NoC architecture (possibly output from I-Put), I-Set is used

to automatically set subsystem parameters (or provide suggestions to the user
regarding possible configuration), thereby providing cost-efficiency tradeoffs. For
example, I-Set enables setting the buffer size at router or network interface and
quality of service features. The output of I-Set is used as a configuration file for
I-Sim, the architecture simulator.
• I-Sim takes as input an XML description of the platform and generates a SystemC

simulation model at transaction-level, bus cycle-accurate level, or co-simulation
VHDL/SystemC.
• I-See is used to interact with the simulator, validate, and explore the NoC archi-

tecture.
• I-Build takes as input an XML description of the platform and a library of Spider-

gon STNoC components from Synopsys CoreKit and generates a synthesizable
VHDL model.

In order to further enhance STNoC design with high-level functions, including
design customization, RTL generation and early software development, the I-Build
design environment has been extended with two inter-related tools: I-NoC and Meta-
NoC (see Fig. 7.10).

I-NoC is a tool integrated with an IDE environment that allows the architect to
draw a NoC platform using a worksheet, parameterize each instantiated component,
properly set-related system/network information (e.g., memory maps and packet
routing), identify and resolve design errors or mismatches, generate the so-called

Fig. 7.10 STNoC design flow
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RTL architecture generation scripts, and eventually support software development
activities. More specifically, I-NoC design flow is based on two parts.

• The front end consists of graphical STNoC platform creation; this design stage
produces a series of TCL files that accurately describe the platform.
• The backend is the “hidden” part of I-NoC; this is responsible for subsequently

translating the TCL files using the CoreAssembler (cA) Synopsys technology to
automatically generate the RTL corresponding to the parameterized IP created
using the graphical front end. Notice that another key input to the coreAssembler
tools is the coreKit library composed of highly configurable STNoC RTL meta-
components implemented using ad hoc code generators on top of basic VHDL
units. For example, corekit conveniently packages STNoC router, AXI NI, and
STBus components using the Synopsys coreKit technology. The backend also
produces a set of input files to aid STMicroelectronics’ verification flow and regres-
sion activity. Finally, I-NoC can be used to generate a software driver for a Linux
kernel which provides a user space interface to the programmable services pro-
vided by the NoC design. In addition, a portable C library uses the driver interfaces
to provide a homogeneous C interface to applications and higher level functional-
ity, such as determining appropriate QoS parameters based on specific bandwidth
requirements.

Meta-NoC technology enhances STNoC design flow by supporting well-defined
NoC customization. Since Meta-NoC technology is currently patent pending, we
cannot disclose all the fine details. As shown in Fig. 7.10, Meta-NoC’s entry point in
the design flow is through I-NoC, while adding powerful NoC configuration capa-
bilities based on the notion of a metacompiler. This metacompiler is essentially a
well-structured software layer which generates configurable IP blocks in RTL, over-
coming limits of HDL-based, tool-dependent configuration statements. The meta-
compiler is implemented as a set of high-level XOTCL instructions; XOTCL is an
object/aspect-oriented scripting language based on TCL.

The main concept of Meta-NoC is to maintain the global HDL description sim-
ilar to a traditional design flow, but to also implement certain configurable parts of
the design (that require complex configuration) using specialized instructions of the
metacompiler. During the configuration phase, the metacompiler substitutes these
instructions with the configured RTL block, by providing a “hook” to coreAssembler
through which the “metacompiler” is called, allowing it to perform the necessary
substitution. The obtained RTL is optimized HDL code that prevents generation of
unnecessary code and allows instantiation of different types of components accord-
ing to the user-defined configuration, hence resulting in new features and product
improvements, while shortening the design cycle; in this process, unconnected sig-
nals and ports are removed. An example where Meta-NoC has already been applied
effectively is NoC reconfigurability (see Sect. 7.4).

NoC modeling and evaluation is an essential topic in multicore SoC design. In
this scope, researchers from both academy and industry have also developed open
design methodologies and tools which are briefly outlined in the following section.
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7.3.4 Related Open Tools for NoC Design Space Exploration

Today’s modern system-level design focuses on methodologies, tools, and frame-
works for exploring multicore SoC and NoC infrastructures. In particular, NoC design
flow involves different layers from algorithmic description of system functionality
to representation and modeling in a hardware description language (HDL). Driven
by the advances and greater capability of electronic system-level automation, several
system-level tools have been proposed for exploring the design of multicore systems,
including on-chip interconnects.

Employing a NoC involves several challenges in SoC design flow, such as select-
ing the most suitable combination of NoC topology, routing algorithm, buffering
strategy, flow control scheme in terms of performance or power-efficiency. Because
of the wide spectrum of alternatives that these challenges may impose to the required
performance of the final application, the evaluation of NoCs turns into a mandatory
practice in the design flow of modern SoCs. Exploration at design time of these alter-
natives is usually the primary methodology that researchers propose; even though
network calculus and runtime schemes have emerged as an attempt to evaluate the
best tradeoff in terms of NoC architecture characteristics, the system constraints and
requirements of a given application are usually examined through extensive simula-
tion.

Open source research simulators for NoC are usually built to facilitate dissemina-
tion. In this subsection, we elaborate on open source system- down to RT-level design
tools and methodologies for NoC design, while related VLSI simulation, synthesis,
and physical design tools actually fall beyond the scope of this work.

The computational effort of a simulation framework usually indicates a level of
accuracy. Careful consideration of this tradeoff is necessary in order to avoid signifi-
cant deviation from real system operation. In fact, simulation results beyond an error
margin can be rendered meaningless; on the other hand, excessive computational
effort could make simulation time prohibitive. While most network simulation tools
lack the required flexibility to allow dynamic adaptation of their computational effort
to different operating scenarios, systems such as GEM5 can dynamically adjust this
tradeoff when moving from initial exploration of the design space to the final prod-
uct [7]. A different solution, employed by GEMS [35], relies on simulating different
parts of the system with varying levels of detail, in order to optimize either for speed
or accuracy.

As NoC development draws a lot of attention due to enabling scalable and power-
efficient multicore SoC solutions, many researchers have proposed specialized mod-
eling frameworks, in addition to general-purpose network simulators (e.g., ns-2) that
were previously used to estimate NoC performance [46].

Orion is a NoC simulator developed to evaluate network performance and power
estimation for different traffic patterns and flow control parameters [29, 50]. Orion
2.0 models support any topology that uses wormhole routers, while developers may
provide more accurate system-level power and area models for NoC routers.
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SICOSYS [45] is a general purpose interconnection network simulator that cap-
tures essential details of low-level simulation. It was originally conceived to obtain
results very close to those obtained by modeling network components in HDL hard-
ware simulators, albeit at a lower computational cost.

RSIM simulates shared memory multiprocessors and uniprocessors built from
processors that aggressively exploit instruction-level parallelism (ILP) [44]. RSIM
is execution-driven, modeling state-of-the-art ILP processors, an aggressive mem-
ory system, and a multiprocessor coherence protocol and interconnect, including
contention at all resources.

On top of SICOSYS, TOPAZ [1] is proposed as a general-purpose interconnection
network simulator that enables the modeling of a wide variety of message routers,
with different tradeoffs between speed and precision. The design of TOPAZ is object-
oriented and has been implemented in C++.

The Nostrum NoC simulation environment (NNSE) explores the design space for
Nostrum NoC [32, 33]. Furthermore, HNOCS is a modular open-source OMNeT++
based NoC simulator supporting heterogeneous NoCs with variable link capacities
and number of VCs per each unidirectional port [27]. The simulator features paral-
lelism and arbitrary topologies and includes synchronous virtual output queues and
asynchronous NoC routers.

The Noxim NoC simulator supports various routing algorithms, NoC sizes, and
arbitrary traffic injection rates [42]. NiRGAM NoC interconnect modeling tool [40]
is developed giving the user the ability to investigate different QoS levels and para-
meters for network traffic. These tools are useful to explore design space and power
estimation and are capable of obtaining performance metrics. These simulators are
based on SystemC and are not synthesizable, providing limited support for exploring
error control features in NoCs.

The Atlas framework is a set of tools developed in Java that automate the var-
ious processes related to the design flow of mesh-based NoCs [21]. In particular,
the Atlas environment enables the designer to evaluate the performance and power
consumption of different NoC configurations. The toolkit includes several tools.

• A NoC generation tool that creates a user-parameterizable network which is
described in VHDL and its testbench described in SystemC.
• A traffic generator that produces traffic following different temporal traffic distri-

butions (e.g., normal, uniform, and exponential).
• A simulation tool, which actually invokes an external VHDL/SystemC simula-

tor, Mentor Graphics’ ModelSim with the generated traffic files. At the end, this
simulation driver collects the generated traffic output files for evaluation.
• A traffic evaluation tool, which uses the simulator output traffic to provide statisti-

cal analysis results, such as: (i) total number of received packets, (ii) average time
to deliver the packets, (iii) total time to deliver all packets, and (iv) the average,
minimal, maximal, and standard deviation time to deliver a packet.
• A power evaluation tool that integrates an internal power estimation model anno-

tated using a commercial power estimation tool (Synopsys PrimePower).
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Table 7.1 Summary of open NoC simulation frameworks

Simulator Framework Topologies Comments

Atlas Java, SystemC, HDL Hermes Synthesizable
HNOCS OMNeT++ All Parallelism
Netmaker SystemVerilog - Synthesizable
NiRGAM SystemC All
NNSE SystemC Mesh, Torus
Noxim SystemC Mesh
OCCN C++, SystemC -
ORION C - power, area
SICOSYS C++ Mesh with constant transfer time
TOPAZ C++ 2-d/3-d mesh/torus, midimew, ring

In addition to this open source framework, Netmaker is a library of fully syn-
thesizable parameterized NoC implementations [39]. These networks are designed
to provide packet-based communication for complex multiprocessor SoCs and
multi/many-core processors. This library is developed in order to aid the accurate
characterization of potential router microarchitectures, routing algorithms, and net-
work topologies. The ability to synthesize gate-level implementations also allows
the library to be used when exploiting FPGA-based environments for many-core
systems research.

More recently, FPGA-based NoC emulators have been proposed that reduce simu-
lation time by several orders of magnitude compared to software [19, 52]. However,
resource restrictions of the FPGA device and costly redesign cycles may render
these approaches impractical. A middle-ground proposal is the DART architecture
[49] that can be parameterized by software at runtime to simulate different NoCs
without modifying the hardware simulator on the FPGA. It has been shown that
this infrastructure can achieve over 100× speedup relative to a cycle-based software
simulator, while maintaining the same level of simulation accuracy.

A summary of the open source tools presented above is provided in Table 7.1.
Besides open modeling frameworks which are too many to mention here, commercial
design kits (e.g., NoCexplorer and NoCcomplier proposed by Arteris [4]) allow
defining NoC interfaces, quality of service requirements and topologies, and are
capable of estimating area and performance.

7.4 The Spidergon STNoC Routing Algorithm

Routing algorithms are responsible for the selection of a path from a source node to a
destination node in a particular network topology. A good routing algorithm balances
load across the various network channels, even in the presence of non-uniform or
intensive traffic patterns. A well-designed routing algorithm also keeps path lengths
as short as possible, thus reducing the overall packet latency.



www.manaraa.com

7.4 The Spidergon STNoC Routing Algorithm 177

Another important aspect of a routing algorithm is its ability to work in the pres-
ence of faults in the network. If a particular algorithm is hardwired into the router
and a network link or node fails, then the entire network communication fails. Alter-
natively, if the routing algorithm can be reprogrammed (adapted to the failure), then
the system can continue to operate with only a slight performance loss.

Routing algorithms are classified depending on how they select between all pos-
sible paths from a source node to a destination node. Three main categories are
specified:

• deterministic, where always the same path is chosen between a source and a des-
tination node, even if multiple paths exist;
• oblivious, where the path is chosen without taking into account the present state of

the network; oblivious routing algorithms include deterministic routing algorithms
as a subset;
• adaptive, where the current state of the network is used to select the path.

The routing algorithms adopted in the SSTNoC belong to the class of deterministic
algorithms. The choice of deterministic routing guarantees an ordered end-to-end
communication, thus avoiding costly flit reordering at packet reception. Moreover,
adaptive routing has an implementation cost that is generally considered unacceptable
in the NoC domain for the near term future.

After discussing the fault-free routing algorithms, we will also focus on SSTNoC
methods for changing the routing paths at runtime, thus maintaining fault tolerance
in the case of network router or link faults. These methods have already been imple-
mented in the corresponding SSTNoC RTL IP.

7.4.1 Across-First Routing

Across-First is a deterministic, shortest-path routing algorithm. The algorithm either
moves packets along the ring, in the proper direction, to reach nodes which are close
to the source node (not farther than d = ceiling(N/4) hops), or otherwise, it uses
the cross link to send packets to the far away subnetwork, and then move them along
the ring.

Fig. 7.11 shows the routing paths in the SSTNoC with N=12, considering node 0
as the starting point; the clockwise direction is indicated by R (right), the counter-
clockwise by L (left) and the cross connection by A (across). Since the routing
algorithm is local, and the NoC topology is vertex-symmetric, we may describe the
routing algorithm at any node, and only for half of all possible destinations.

The Across-First routing scheme is based on the following principles:

• the A port is selected at most once, always in the beginning of each packet’s route;
• when the packet moves in the ring, it follows the same direction, either right (R)

or left (L) for its entire path.
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Fig. 7.11 Across-First routing paths in SSTNoC with N = 12

According to the previous two properties, the Across-First scheme can be imple-
mented as simple source-based routing, i.e., the entire path is encoded in the packet
header, so each router can extract the forward information without any need of com-
plex computation or any lookup table, implying fast routing decisions at each router.
A common drawback of source-based routing is that the header path field has a vari-
able size depending on the network size. However, this does not occur in SSTNoC
because of the symmetry of the topology. Indeed the Across-First scheme describes
the packet route in the packet header through a fixed size field, called dir (2 bits).
These two bits specify the direction of the packet in the network with four choices
(right, left, across, and then left, or across and then right).

Moreover, the routing scheme is extremely simple and fast, consisting of two
steps, one at packet generation in the NI and the other along the packet path on each
input port of the router.

Formally, let us assume that each router has a unique network address i , where i
is from 0 to N -1 and N is the network size. We define the following node identifiers:
dest as the address of the destination node and current as the address of the node
along the path crossed by the packet. We also assume that a sense of direction field
(dir ) indicates the possible directions: right (R), left (L), left and finally across (L A),
or right and finally across (R A).

At packet generation, given the destination node, the two fields in the packet
header (dest and dir ) are set. The dir bits provide information on the direction of
the packet route in the ring, so it is R or L if the first hop is respectively right or
left in the ring, or AR and AL if the first hop is across. When the destination is the
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Fig. 7.12 Channel dependency graph for Across-First routing on Spidergon STNoC

one directly connected by the cross link, the L or R information of the dir field is
meaningless; this case can be included in the AL direction field, and then the L value
is not considered. For instance, in Fig. 7.11, when the destination is node 5, the first
hop is A and the dir bit is set to AL; when the destination is node 6, the dir bit is
set to AL as well, but actually L is not used.

After this first step at packet generation, a simple algorithm is used to forward the
packet at each router; the dest and dir fields are exploited.

Across-First routing is appropriate not only for one-to-one (point-to-point), but
also for one-to-many (broadcast, scatter), and many-to-many (total exchange) traffic
configurations. However, it is not optimal for many-to-one (gather) traffic scenarios.
For this scenario (and related some-to-many scenarios), the cross communication port
should be selected at the end of each packet’s route (called Across − Last , defined
later in this section), thus requiring a slight modification of the above algorithm.
Although, we next focus only on the point-to-point routing algorithm, necessary
modifications for many-to-one (or some-to-many) scenarios are immediate and will
be omitted.

If router arbitration is fair, Across-First routing is livelock and starvation free, but
not deadlock free. To provide a deadlock free routing algorithm, we may restrict the
routing paths that a packet may take, e.g., as in the 2-D mesh turn model [20], or
alternatively use virtual channels (VCs) to break cycles in the channel dependency
graph [11, 13, 17]. By examining the corresponding cyclic dependency graph (see
Fig. 7.12), deadlock avoidance the Across-First scheme requires 2 virtual channels
(V C0 and V C1) for each link on the clockwise and anticlockwise (R and L) links.
Notice that the use of FIFO virtual channel buffers at each output port implies guar-
anteed ordering of transmissions from packets originating at the same node. Hence,
with a simple modification, Across-First algorithm can be made deadlock free: “Dur-
ing routing, V C0 is always used, if and only if currdestin ‘?‘0, otherwise V C1 is
selected”.
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7.4.2 Across-First Zero VC Routing

Across-First routing can be slightly modified to become deadlock free without the
use of any virtual channels. We call this strategy Across-First_zero, since it behaves
like Across-First, but forbids taking a path, while traveling in the ring, that crosses
node 0. The choice of node 0 (called a physical dateline) is arbitrary due to network
symmetry.

With this scheme, the initial routing step has to be modified with respect to the
Across-First scheme: packets crossing node 0 must be routed in the opposite direction
of the ring, thus possibly not using the cross connection as a first hop. In general, this
routing scheme is not shortest-path, but despite performance degradation, Across-
First_zero has been introduced, since

• it can be used when low-cost is priority and performance requirements are satisfied,
and
• it is foreseen that many SoC applications can be mapped in the network minimizing

or avoiding traffic patterns that cross node 0, thus canceling the performance
penalty of Across-First_zero with respect to Across-First.

Hybrid routing is also possible, e.g., by combining Across-Last_zero routing for
the request packets and Across-First_zero routing for the response. This type of
routing is critical in request/response flows, whereby many initiators communicate
with few targets.

Furthermore, notice that the physical dateline assignment (e.g., node 0) for the
naive algorithm leaves considerable flexibility for a more balanced virtual channel
allocation. For example, if a packet route does not cross the dateline, any virtual
channel can be used. These logical datelines can be exploited further to achieve a more
balanced assignment of packets to virtual channels, thereby making more efficient
use of network buffer space, reducing network contention, lowering communication
latency and increasing network bandwidth.

Based on an application task graph, a balanced virtual channel allocation must be
f air to all IPs, so that all accesses complete the same amount of work in approxi-
mately the same amount of time. Otherwise, system performance may be determined
by the speed of the slowest IP. Balancing virtual channel allocations depends on dif-
ferent issues, such as:

• exact placement of datelines,
• assignment of unconstrained communication paths,
• qualitative and quantitative aspects of the communication protocol, e.g., latency

hiding, e.g., multithreading, data prefetching, cache coherency [8], multipoint
versus point-to-point relative bandwidth allocations, priority classes, relative size
of each packet type, e.g., requests versus replies,
• multiprogramming, e.g., relative importance of system partitions, and
• application traffic, esp. dynamic (or stochastic) and static communication/

computation patterns. Dynamic patterns include models for continuous routing,
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random permutations/destinations, memory/network hot spots, locality of refer-
ence, periodic data packet bursts, and latency hiding [23, 31].
• intensive communications, e.g., single and multinode broadcast (or accumulate),

single node scatter (or gather), and total exchange,
• linear permutations, e.g., affine, Omega, Inverse Omega, BPC permutations, and

Ascend/Descend computation patterns, and
• generalized communication patterns common in parallel algorithms, such as iso-

tonic routing (contraction, or expansions), parallel scan (prefix), and sorting.
Dynamic patterns include routing according to random permutations or desti-
nations.

Virtual channel balancing can also help avoid head-of-line blocking, at least par-
tially, since we usually have a limited number of virtual channels compared to N 2

possible source-destination pairs. In this sense, a blocked packet flit on a congested
virtual channel can no longer block a packet on a different non-congested virtual
channel over a common physical channel.

We have also explored related models in order to optimize virtual channel alloca-
tions for Spidergon STNoC.

7.4.3 Across-Last Routing

Across-Last is also a deterministic, shortest-path routing algorithm. For nodes closer
than d = ceiling(N/4) hops, it moves packets in the proper direction along the
ring to reach the destination node. Otherwise, for nodes further, the packet moves
in the opposite position with respect to the destination; the final target is reached
by jumping through the cross link at the last hop. The algorithm is similar to the
Across-First scheme, but the cross link, used to reach the far away nodes from the
source one, is now selected as last hop, Fig. 7.13 shows the routing paths in the
SSTNoC with N = 12, considering node 0 as starting point.

Across-Last routing is based on following principles:

• the A port is selected at most once, always at the end of each packet’s route;
• when the packet moves in the ring, it follows the same direction (right or left) for

its entire path.

The Across-Last scheme can be implemented in a similar way to the Across-First
scheme. In this case, the dir field indicates the following possible directions: right
(R), left (L), left and finally across (L A), or right and finally across (R A).

At packet generation, given the destination node, the two fields in the packet
header (dest and dir ) are set. The dir bits provide information on the direction of
the packet route in the ring, so it is R or L if the first hop is right or left respectively,
or L A and R A if the last hop is across. When the destination is the one directly
connected by the cross link, the L A or R A cases can be used, although the L or R
information are really meaningless. For instance, in Fig. 7.13, when the destination
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Fig. 7.13 Across-Last routing paths in SSTNoC with N = 12

is node 5, the path is L then A, and the dir bit is set to L A; when the destination is
node 6, the dir bit is set to L A as well, but actually L is not used.

After this first step at packet generation, during packet routing, a simpler algorithm
is used to forward the packet at each router; the destination and dir fields are exploited.

7.4.4 Across-Last Zero VC Routing

A deadlock-free Across-last algorithm would require two virtual channels along the
Spidergon STNoC ring links. Hence, Across-Last Zero VC routing modifies the
initial routing step with respect to the Across-First scheme: packets crossing node 0
must be routed in the opposite direction of the ring, thus possibly not using the cross
connection as a last hop. Alike Across-First_zero, the physical dateline at node 0 is
arbitrary and general thanks to the symmetry of the network. The concepts regarding
VC balancing developed for Across-First_zero also apply here.
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While traditional Spidergon STNoC routing algorithms rely on a simple form
of source routing, thus allowing routers to operate at very high frequencies without
complex processing or access to internal routing tables, they do not allow the SoC
architect to design a platform-specific network instance. By considering source rout-
ing technology, we can enhance the interconnection capability of Spidergon STNoC
technology, allowing the implementation of more general graph topologies of a
maximum degree 4 (excluding network interface connection) that are fundamentally
different from Spidergon interconnect and derivatives. With only a small overhead in
terms of router complexity and consequently its performance, this concept provides
much more freedom in terms of building an application-specific network topology.
The new routing technology requires unification of the dir and dest header subfields
to a single routing header and the introduction of a specialized Routing Computing
Unit (RCU) which makes decisions based on a preset number of bits in the header
field. Spidergon STNoC currently allows selecting any of these two routing strate-
gies for a given network, but does not allow both spidergon and source routing to
operate simultaneously on the same network. The header is created within the net-
work interface, where routing information is computed and stored during address/
source decoding. Further details fall beyond the scope of this chapter and have been
omitted.

7.5 Fault Tolerant Routing on Spidergon STNoC

In the previous section we have introduced the SSTNoC routing algorithms. These
algorithms allow routers to run at very high frequencies since the steps for routing
packets are very simple and it has been possible to implement them in a very efficient
way. In this section, we focus on a novel routing and destination reprogramming
capability that leads to a simple, robust fault tolerant routing mechanism.

A fault within a NoC can happen at two levels: link or router node. If the design
does not provide a fault tolerant routing scheme, both faults can lead to a complete
failure of the multicore SoC implemented around this interconnect. Fault tolerant
routing instead allows maintaining all SoC capabilities and services running. Perfor-
mance can be deteriorated and therefore some high-end capabilities can be lost, but
the complete system continues to run.

We now consider an example of a failure within SSTNoC and explain how to
realize a fault tolerant system through the use of direction and destination reprogram-
ming at the network interface. If a router is faulty, the network interface attached
to this router cannot communicate online with the rest of the system anymore, if
there is no fault tolerant routing scheme available. In case of target nodes, such as
memory elements, we can build a robust system using destination reprogramming
which allows the most important targets to continue to be connected even if a router
connected to them stops operating.

In Fig. 7.14, if the router with ID 3 becomes faulty, then we can imagine that as a
direct consequence all packets that were previously routed through this router (with
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Fig. 7.14 SSTNoC router fault

Fig. 7.15 Two possible alternative routes for SSTNoC with router fault

any of the previously explained algorithms) would be lost, unless an appropriate fault
tolerant routing scheme is established. Thus, in this case, packets from router 2 and
going to router 4 would continue to follow the ring (green bold line in Fig. 7.14),
and eventually they would be lost since router 3 has faulted.

Based on this example, observe that if the association between each packet des-
tination and direction field was kept fixed, then the NoC would not be fault tolerant.
Hence, for this purpose, we propose that each SSTNoC network interface connected
to an Initiator or Target device can provide a sorted table containing for each possible
destination the corresponding direction (dir ) field to be used.

In this manner, SSTNoC can be made fault tolerant by reprogramming the des-
tination and direction fields at runtime. For example, by reprogramming the table
contained in the network interface attached to router 2 (see Fig. 7.14), the packet
destined to router 4 can still reach its destination. While some paths in Fig. 7.14
are shortest path (a preferable path), there are several other non faulty (but possibly
longer paths) that can be used, if this path becomes unreliable.

Two alternatives paths (of non-shortest length) are shown in Fig. 7.15. If we want
to implement the one on the right, the direction field associated to destination 4 will
be reprogrammed, taking the new value R A (right and across as last hop). If the path
on the left is preferred the direction field would take the value AR (across first then
right).



www.manaraa.com

7.5 Fault Tolerant Routing on Spidergon STNoC 185

Fig. 7.16 SSTNoC link fault

Fig. 7.17 Two possible alternatives of SSTNoC routing (link fault)

Another cause of SSTNoC failure can be a link breakdown, as shown in Fig. 7.16.
In this case, consequences of the link fault are less important than in the case of router
breakdown. As before, this fault would make all packets normally traveling around
the ring to stop when trying to pass through the faulty link. Similar to the previous
case of a router fault, by reprogramming the direction field associated to the traffic
impacted by this failure, we can still support a working system.

Fig. 7.17 shows two alternative paths (of non-shortest length) than can be exploited
to overcome the link failure. Both schemes allow the traffic coming from router 2
still to reach router 3. If we want to implement the one on the right, the direction field
associated to destination 4 would be reprogrammed to AR (across first then right).
If the path on the left is preferred the direction field would take the value R A (right
and across as last hop).

Thus far, we have discussed efforts toward making SSTNoC even more robust to
permanent link or router faults through direction reprogramming.

This feature is often useful when attaching external components to the NoC, such
as memory tiles. The following example provides motivation toward fully exploring
the benefits of fault tolerant routing mechanisms based on reprogramming at the
network interface.

In Fig. 7.18, we show such a system (notice that network interfaces are not drawn
for sake of simplicity) where a dual port memory controller is connected to Spidergon
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Fig. 7.18 A dual port memory controller connected to SSTNoC

STNoC through two connections: one from router 4, and another one from router 5.
The physical memory space behind the memory controller is the same. This means
that the address range associated to destination router 4 and destination router 5 is
the same. The system is usually programmed to allow some Initiators to access the
memory through one port and some others through the second port, trying to optimize
accesses to the memory controller in terms of network and memory bandwidth.

Let us consider what happens, if router 4 becomes faulty (see Fig. 7.18). Then,
all masters that access the memory using this router as final destination (e.g., the one
connected to router 2) cannot anymore access memory, hence in this case direction
reprogramming at the network interface alone does not help. However, if in addition
to direction reprogramming, we also offer destination reprogramming, then we can
realize a fault tolerant routing solution.

In Fig. 7.19, we can clearly see how traffic coming from an Initiator connected
to router 2 can still reach the memory (the initiator is omitted from the figure). This
is achieved through reprogramming both the direction and destination: the direction
field takes a new value RA “right and across as last” and also the destination filed
takes a new value “5”.

7.5.1 NoC Reconfigurability using Meta-NoC

Meta-NoC has already been applied effectively in allowing the user to customize the
transport header of the STNoC packet, as required in network interface reprogram-
ming.

Fig. 7.20 shows a typical STNoC packet. Notice the distinction between transport
header and network header. The first header contains all information that is end-to-
end protocol-dependent, i.e., coded at the master NI and decoded at the target NI,
while the second one is used by routers to transmit packets to their correct output
port.
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Fig. 7.19 Fault tolerant routing with destination/direction reprogramming on SSTNoC

Fig. 7.20 The STNoC packet

By fusing the necessary RTL mechanisms required to translate a user-defined
transport header into the Meta-NoC approach, the user can introduce a TCL descrip-
tion of its “transport header” into the STNoC design flow which defines all required
fields. These fields can be subsequently translated to appropriate RTL by applying
the Meta-NoC design flow explained in Sect. 7.3.2.

Moreover, network header size is currently fixed to 16 bits, with only 12 bits
related to source routing information. This is a potential limitation on large-scale
systems realized by STNoC technology, with workarounds, such as connecting one
master and one target NI back to back so that information that flows out of one
“NoC port” reenters in another” one, leading to latency and resource utilization
overheads. Hence, similar to the transport header, Meta-NoC technology can exploit
the transition from a fixed 16-bit network header to a dynamically configurable N -bit
network header specified and customized by the architect. The protocol would also
enable the architect implement specialized fields in the STNoC packet header, such
as error correction/detection, information dispersal, and secret sharing. Notice that,
NI and router must also be instrumented to cope with dynamic processing of these
specialized bits.

Notice that there are many related concepts that would be explored in the future, so
this example only provides a glimpse into a powerful Meta-NoC approach designed
for STNoC methodology.
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7.6 Conclusion and Future Extensions

Market, application and technology developments impose new challenges for SoC
design. A packet-switched NoC is foreseen as the natural evolution of current SoC
buses, such as STBus and IBM CoreConnect [26], for achieving crucial cost-effective
tradeoffs for future MPSoC applications. The Spidergon STNoC consists of three
basic components (a standardized network interface, a high performance wormhole
router and a physical communication link) configured in ST’s proprietary Spidergon
NoC topology. Furthermore, STNoC supports an OSI-like communication protocol
stack composed of four layers: physical, data, network, and transport.

The Spidergon STNoC topology is a regular chordal ring with vertex-transitivity.
Thus, all nodes have global knowledge of the network, providing for simple, local
shortest-path routing, and scheduling based on virtual circuits. In addition, for prac-
tical network sizes, the Spidergon STNoC topology is a low-cost tradeoff compared
to mesh or torus, providing competitive performance metrics in respect to number of
links, diameter, average distance, size granularity (just 2), and embedding properties
for mapping MPSoC application traffic.

The implementation of fault tolerant STNoC routing through reprogramming net-
work interface routing registers avoids unreliable paths due to link and/or router faults
failures, allowing the system to continue to work with slight degradation. The RTL
has already been implemented by STMicroelectronics and integrated into the high-
level Meta-NoC tool for industrial exploitation. Similar extensions toward a STNoC
source-based routing algorithm that can overcome limitations in the number of net-
work routers will lead toward eventual commercialization of topology-independent
STNoC technology.

Due to STMicroelectronics’s efforts toward the development of Meta-NoC, it is
now possible to provide a dynamic approach toward customized design of many
important ingredients of STNoC technology.

The Interconnect Design Kit outlined in Sect. 7.3.2 can be further generalized an
array of tools targeting efficient design of any Interconnect Processing Unit (IPU).
By definition, an IPU is any on-chip communication network (NoC) with hardware
and software components which jointly implement key functions of different SoC
programming models through a set of communication and synchronization primi-
tives and provide low-level platform services to enable advanced features in modern
heterogeneous applications on a single die. Thus, we anticipate that the Spidergon
NoC topology will enable the transition from today’s SoC integration to future gen-
erations of complex MPSoC applications, delivering competitive products with ever-
increasing performance/price requirements without compromising time-to-market.
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Chapter 8
Middleware Memory Management in NoC

Abstract Since modern platforms have moved from single core to Multi-Processor
Systems-on-Chip and Many-Core architectures, NoC prevails as the key solution
to overcome on-chip communication problems. However, memory management has
become a major challenge in improving applications performance on top of the
services provided by the NoC infrastructure. Specifically, dynamic memory requests
over distributed memory organizations appear to be a critical problem, since they can
be unknown at design-time and unsuccessful management can lead to severe bottle-
necks and excessive power consumption. In this chapter a middleware (microcode)
approach to providing Dynamic Memory Management is presented in detail.

8.1 Introduction

The current trend in computing and embedded architectures is to replace complex
superscalar architectures with many processing units connected by an
on-chip network. Future integrated systems will contain billion of transistors [23],
composing tens to hundreds of IP cores and the number of cores to be integrated in a
single chip is expected to rapidly increase in the coming years, moving from multi- to
many-core architectures. Modern embedded platforms take advantage of this manu-
facturing technology advancement and the Network-on-Chip (NoC) communication
paradigm prevails as the solution for modern platforms. From an industrial point of
view, the vision goes as far as thousand core chips [7]. Additionally, the develop-
ment of such many-core architectures is driven also by the development of highly
parallel/multi-threaded demanding applications.

Memory is an important contributor to the performance and power consumption of
NoC platforms. As the number of on-chip cores increased, the memory content also
increased from 20 % ten years ago to 85 % of the chip area today and will continue
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to increase in the future. Memories are preferably distributed for medium and large
scale system sizes, since centralized memory has already become the bottleneck of
performance, power and cost. Traditional memory optimization uses compile-time
information and focuses on static allocation in respect to memory hierarchy [8].
For modern dynamic applications using many-core architectural templates, this is
no longer possible since there is a lot of memory unpredictability, which cannot be
captured by source code analysis alone and the increased dynamism in data storage
leads to unexpected memory footprint variations unknown at design time. Insuffi-
cient memory management leads to overall performance degradation, big memory
footprint and increased power consumption as shown in Fig. 8.1.

Dynamic Memory managers, also known as heap managers or allocators, are
responsible for organizing the dynamically allocated data in memory and servic-
ing the application memory requests at run-time [26]. The efficient implementation
of dynamic memory managers, which can be implemented either in software, in
hardware or in middleware, plays an important role to the application performance
and platform’s power consumption. As illustrated in [6] simple Dynamic Memory
Management (DMM) implementations often form a performance and scalability bot-
tleneck in the case of multi-threaded applications, affecting the memory and energy
consumption of the overall system. Thus, customized DMM solutions are critical
components during the design phase of modern NoC systems.

8.2 Categorization of Dynamic Memory Managers

There are three ways to offer memory management services on NoC modern Distrib-
uted Shared Memory (DSM) platforms: (a) software-only; (b) dedicated hardware;
and (c) middleware-microcode.

Fig. 8.1 Performance gap between processors and memory [12]
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Fig. 8.2 16-node mesh McNoC; Processor-Memory (PM) node [10]

Historically, software-only solutions are the current practice, being flexible but
consuming many processor cycles, limiting system performance. Extensive research
has been conducted for general-purpose DMM, which target either the single proces-
sor [15, 26], or the multi-processor domain [6, 14, 17, 18, 25]. However, the amount
of work that the DM managers perform is not always the same, it changes at run-
time since the state of the heap and the number of applications accessing it varies,
and it also depends on the type of calls and their parameters. Developing dynamic
multi-threaded applications, using worst-case estimates for managing memory in a
static manner, would impose severe overheads in memory footprint and power con-
sumption. To avoid such type of costly over-estimations, developers are motivated
to efficiently utilize dynamic memory.

Dedicated hardware solutions can achieve high performance, but any small change
in functionality leads to re-design of the entire hardware module. A memory allocator
which favors cache locality on specific SMP systems is proposed in S. Schneider [21].
Authors in [4] study heap management in the Cell processor, a relevant hardware
architecture, but they do not handle shared memory; instead of this, the process-
ing units have to handle their own, dedicated memory and they communicate with
the system through explicit DMA calls, a limitation posed by the individual hard-
ware platform. A hardware memory management unit (SoCDMMU), responsible
for the dynamic allocation and de-allocation of memory is presented in M. Shalan
and V.J. Mooney [22]. However, this is a centralized unit and could be a poten-
tial bottleneck in NoCs. Furthermore, SoCDMMU is able to allocate only complete
global memory pages and the management of the data (de)allocation of the local
(or private) memories is left out to the processors. A hardware MMU (HwMMU)
offering dynamic allocation of data on the DSM space of an NoC is proposed in
M. Monchiero et al. [19]. HwMMU supports dynamic allocation and de-allocation
of shared memory with a granularity of complete memory pages, supported by new
API calls.
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Middleware-microcode approach is a good alternative to overcome the perfor
mance-flexibility dilemma, offering a programmable and flexible solution to accel-
erate a wide range of applications [24]. The microcode approach has been used in
previous multiprocessor systems to solve DSM related memory management issues.
The Alewife [1] machine addresses the problem of providing a single address space
machine with integrated message passing mechanism. However, it is a dedicated
hardware solution and also does not support virtual memory. Both FLASH [16] and
Typhoon [20] use a programmable co-processor for supporting flexible cache coher-
ence policy and communication protocol. If two or more requests come concurrently,
only one can compete to be handled while the others have to be delayed, resulting in
contention delay. Furthermore, the FLASH and the Typhoon organize memory banks
to form a cache-coherent shared memory. Memory accesses are handled by the pro-
grammable coprocessor. The SMTp [9] exploits SMT in conjunction with a standard
integrated memory controller to enable a coherence protocol thread used to support
DSM multiprocessors. The protocol programmability is offered by a system thread
context rather than an extra programmable coprocessor. A distributed application-
specific DMM for distributed shared-memory MPSoC platforms, implemented at the
microcode level has been proposed in I. Anagnostopoulos et al. [2].

8.3 NoC Platform Example Providing Middleware Services

An NoC system able to provide mddleware services and customized microcoded
DMMs is the one presented in X. Chen et al. [10]. The platform is composed of
Processor-Memory (PM) nodes interconnected via a packet-switched mesh network
(Fig. 8.2). A PM node is composed of a LEON3 processor with its own I-Cache and
D-Cache, a Dual Microcoded Controller (DMC) and memory which can be shared
among the nodes. The key module, on which the developed techniques are based for
memory and data management, is the DMC, able to simultaneously serve various
requests from the local core and the remote ones via the network. The platform offers
base DSM services such as:

• virtual-to-physical (V2P) address translation
• synchronization
• cache coherency
• memory consistency
• shared memory access

To speed up frequent memory accesses as well as to maintain a single logical
addressing space, the local memory of each node is partitioned into two parts: private
and shared. Accordingly, two addressing schemes are introduced: physical addressing
and virtual addressing. The local core using physical addressing can only access the
private memory. All shared memories are globally visible to all nodes and organized
as a single virtual addressing space using virtual addressing and V2P translation.
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Fig. 8.3 DSM organization and V2P translation

Such translation incurs overhead but makes the DSM organization transparent to the
application and the other DSM services, thus facilitating programming.

Figure 8.3 shows the DSM organization and V2P translation. On the left, there
are the platform’s nodes each of which have their private and shared memory. The
physical addresses of the shared part range from 0x00000 to0x20000. Under V2P
translation in the DSM environment, all shared memories are organized as a single
virtual addressing space. The application uses the virtual addresses (0x40200000,
etc.) in order to access the shared memory and the triggering of the corresponding
physical node is performed but the DMC after the V2P translation.

8.3.1 Microcoded DMM on NoC Platform

DMM is a technique in which programs determine at run-time how and where
dynamic data should be stored. It is needed when the amount of required mem-
ory or when the life cycle of memory usage depends on factors that are not known
a-priori. For example, complex 3D multimedia applications greatly rely on DMM
due to the unpredictability of the input data at compile-time. In DMM, memory is
allocated from a large pool of unused memory area called the heap. A heap, is an
area of memory used for dynamic data allocation and all blocks of memory are allo-
cated and freed in an arbitrary order. The allocation pattern and the size of blocks
is not known until run-time. Under the C programming language, dynamic memory
management is performed by two basic functions, one for dynamically allocating a
memory block (malloc), and one for returning a previously allocated block to the
system (free). Other routines (such as calloc and realloc) are implemented
on top of these two procedures.



www.manaraa.com

196 8 Middleware Memory Management in NoC

int main(){
...

char* ch;
malloc(ch);

...}

Application

1

DMM Library

DMM
decisions

DMM
I/F

D
SM

 p
la

tf
or

m

DMC

Leon3 
processor

Bus

3

4

6
7

8

2

sw *A6, DATA
lw *A6, A0
set A2, 0
lw *A2, A3
lrs A0, A1, 8
add A4, A0, 4

...
mp A1 A0 A6 DATA
end 1

malloc() microcode

5

1

2

3

4

malloc() function call

DMM C-to-microcode I/F

Trigger local DMC

Send malloc request to the destination node

6 Send reply message to source node

7 Return to library

8 Return to application

5 Perform malloc in microcode

Fig. 8.4 Overview of the MAD-DMM distributed allocation allocation procedure

DMM is based on “chunks”, memory blocks that consist of application usable
regions and additional in-band management information. A header is attached to each
allocated object and contains its size and the size of its previous object connected
them in a linked-list style. Heap chunks can be either allocated or freed. Allocated
chunks are still in use by the application, whereas, freed chunks are chunks that were
allocated by the application, used, and then freed. The header’s metadata allows the
efficient indexing of allocated/freed chunks on the appropriate linked lists and the
performing of actions such as coalescing adjacent freed objects into a larger chunk
when needed.

Figure 8.4 shows an overview of how an application interacts with the microcoded
DM managers. The entry point is any C written application. When a DMM function
call appears (malloc()/free()), the DMM library is triggered (STEP 1). The
DM manager, based on the pre-selected policies handles allocated and freed lists by
employing list searching, fitting and fragmentation handling techniques (Table 8.1).
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Table 8.1 DMM library decision building blocks

Feature Description

High-level architecture It determines the way the dynamic memory allocator organizes
and architects its heaps in order to exploit the available
thread-level parallelism into memory management. Five
different families exist: (1) single serial heap; (2) concurrent
single heap; (3) pure private heaps; (4) private heaps with
ownership; and (5) private heaps with thresholds

Data coherency It deals with the synchronization mechanisms in order to ensure
the data coherency in each heap

Inter-heap allocation Where multiple heaps are present design parameters of this
category manage the way where each thread allocate
memory at the inter-heap level. Allocation in this level is
strongly connected with decisions that consider both the
thread clustering in order to share a heap and the thread to
heap mapping. Allocation decisions of finer granularity i.e.
fit policies etc. are included into the intra-heap design space

Inter-heap de-allocation It includes the decisions concerning ownership-aware
de-allocation of each memory block and the placement
decisions for the de-allocated blocks (i.e., in which heap to
be place)

Inter-heap fragmentation It manages the potential memory blowup of the multi-threaded
application and consider decisions in order to reduce or
bound the worst memory blowup (i.e., free block movement
among different heaps)

Block structure It handles the data structures, which organize the memory
blocks inside each heap of the allocator

Pool organization It defines the pool organization inside each heap (i.e., single
pool, one pool per size, traversing order etc.)

Block allocation and
de-allocation

They deal with the operations that satisfy the allocation and
de-allocation requests

Block splitting and coalescing They formalize the decisions to handle the current coalescing
and splitting blocks techniques, i.e. the threshold logic for
coalescing and splitting the blocks

These blocks contain information about the heap architecture, the data coherency,
inter- and intra- thread (de)allocation and fragmentation, block structure and pool
organization. Further details regarding these building blocks can be found in P.R.
Wilson et al., D. Atienza et al., S. Xydis et al. [3, 26, 27]. Afterwards, the DM
manager, through the corresponding C-to-microcode interfaces (STEP 2), triggers the
local DMC (STEP 3) which sends a message to the selected, by the V2P mechanism,
node (STEP 4). Then, that node performs the malloc()/free() functions using
a microcoded implementation of the DMM which is stored in its local control store
(STEP 5). Once STEP 5 is completed, a message is sent to the first node (STEP 6) and
through the DMM library (STEP 7), the corresponding information is propagating
to the application (STEP 8).
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High-level (C/C++) implementations of DMM can be transformed to equivalent
microcode functions. An example of such a tool, has been presented in [2], in which
the authors built generic and fully configurable microcode templates based on the
C/C++ dynamic data structures and exploit the platform’s features. Figure 8.5 shows
an example of the C++ to microcode translation for the First Fit [26] algorithm. Some
of the parameters that can be customized by the aforementioned tool are:

• Number and Type of Fixed List Heaps: This type of Heaps serve fixed sized
allocation requests and in a quick manner. They can be viewed as memory caching
mechanisms for dynamic data thus having a great impact on DMM’s performance
and memory fragmentation.
• Heap size: The maximum assigned memory space that DMM can use for allocation

request in a specific heap. In case heap size threshold is crossed, additional memory
is required from the system, otherwise allocation requests fail.
• Heap positioning: Refers to the mapping of the overall heap organization onto

the distributed memory of the platform. With microcode functions various heap
organizations can be generated and mapped onto the NoC nodes. For example,
heaps can be characterized according to their position either as local (heaps laying
into processor nodes) or global (heaps laying into memory nodes). Heap size is
closely connected with heap positioning due to different memory sizes across the
NoC.

The C/C++ DMM implementations work at a high abstraction level, thus leav-
ing to the host operating system or in the case that there is no OS to the selected
policies the decision of which (part of) physical memory is accessed during allo-
cation requests. However, the management of accessing physical memory becomes
dominant in NoC architectures due to memory distribution over the platform. So, the
question that arises here is which part of the distributed memory should be used for
the allocation?

Authors in I. Anagnostopoulos et al. [2] increase the performance of microcoded
DMM by instructing nodes to try allocation according to topology criteria. For
this reason, at design time and based on topology criteria, priority tables PTs,d ,
(s, d ∈ N ) are built for each node N of the NoC platform. P ∈ N represents the
processing nodes of the MPSoC and M ∈ N represents the memory ones. PTs,d

describes the priority weight of source s accessing destination d. PTs,d priorities
are exploited at run-time guiding the allocation to (neighboring) nodes according
to PTs,d table, starting from the node with the highest priority. The PTs,d value is
defined in Eq. 8.1 [2].

PTs,d = w1 Ps,d + (1− w1)(w2 M Ld + (1− w2)(w3 M Pd + (1− w3 Ds,d)))

(i �=d)∑
∀i
{w1 Ps.i + (1− w1)(w2 M Li + (1− w2)(w3 M Pi + (1− w3 Ds,i )))}

(8.1)
where i ∈ M , Ps,d and Ds,d are the power consumption and delay of the

(s, d) link respectively. M Ld and M Pd are the memory latency and memory power
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C/C++ code

C/C++ to 
DMC Microcode

Fig. 8.5 Code translation example. From C++ to microcode. First Fit algorithm

consumption per access of the d memory respectively. Also,
3∑

i=1
wi = 1, wi ≥ 0, are

the weights for configuring the cost function.
Figure 8.6 shows an illustrated example of customized microcoded DMM accord-

ing to memory distribution. We assume a 3× 3 NoC architecture which consists of
three memory nodes (M(0,1), M(1,2) and M(2,0)). There are three processing nodes
executing threads (Thd

(0,2), Thd
(1,0), Thd

(1,1)) with dynamic allocation operations and
the rest execute code with static data (Ths

(0,0), Ths
(2,1), Ths

(2,2). All processing nodes
have their own Local Memory (LM). Topology aware DMM customization manages
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Fig. 8.6 NoC memory distribution-aware DMM customization example. a Selected topology and
mapped cores. b Thread to memory priority table. c SLL structure. d Microcoded topology aware
function templates

threads with dynamic data. According to Equation 8.1 the priority access table is
built and presented in Fig. 8.6b (0 = highest priority, 8 = lowest priority).

Looking at the priority table (Fig. 8.6b) for each Thd
(i, j) a Single Linked List

(SLL) structure is built containing microcoded memory distribution-aware func-
tions responsible for triggering the correct physical memory when needed. The SLL
structure is presented in Fig. 8.6c. The microcode templates responsible for triggering
remote memory nodes are presented in Fig. 8.6d. Microcoded message passing policy
has been selected to propagate information to neighboring nodes. The microcoded
functions are totally independent and transparent to DMM’s code. They are placed at
the end of the code and they are automatically triggered when the local node asks for
a remote (de)allocation request. With these functions, the execution of microcode to
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a different node is allowed even if the remote node hasn’t received any signal from
its own local core.

8.3.2 Evaluation of Microcoded DMM

The application used in order to evaluate and compare the microcoded DMM, is a
combination of several real-life kernels (performing packet processing, encryption,
scheduling, etc.) that are present in network applications [5] and it is presented in
Fig. 8.7. The application consists of 5 kernels which are triggered by wireless streams.

The system was triggered with a set of traces from a real wireless network. The
representativeness of these traces is assured by the fact that they were obtained from
different network “sniffers” in different buildings of the University Campus. The soft-
ware application is fully multi-threaded as it is increasingly common in computing
systems: each kernel is executed in its own independent thread and communicates
asynchronously with the other kernels through asynchronous FIFO queues.

• Network traffic corresponding to activities like VoIP, FTP and web browsing, and
which have been studied in T. Henderson [11]. This execution thread feeds the
entire system with data packets containing the network traffic. The information
available for each data packet are: time, IP addresses of the source and destination,
source and destination ports and the size of the package. This thread engages the
memory needed for the data packet (without including the information in the
header).
• Creation of a TCP / IP packet. This thread is responsible for assembling a complete

TCP/IP packet completing the information needed in the packet header. We can
liken the operation of this thread by calling the write() (a system call), and
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Fig. 8.7 The used multi-threaded application. Squares define the different threads which commu-
nicate asynchronously through asynchronous FIFO queues [5]
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thereby built in the entire package. The total packet size is increased by 40 Byte (as
is the size of the title). The completed packet is inserted in the corresponding queues
to be encrypted or for error checking (TCP checksum) depending on whether the
connection is encrypted or not.
• Encryption (packages that are part of an encrypted connection are encrypted

according to the DES algorithm). This thread reads data (payload) in packet block
sizes of 8 Byte, and after the encryption it transfers the packet in the queue where
packages wait for error checking.
• Creation of the TCP checksum. This thread calculates the checksum by applying

the procedure described in Information Sciences Institute [13]. The package con-
tents are read by 16 bit and the thread applies to them the corresponding process.
Once the checksum is created it is written in the CRC field header and then the
package is driven to the next queue and execution thread.
• The quality service manager (QoS manager) builds a list of the destinations of dif-

ferent packets and uses priorities for managing them. Whenever a packet enters the
system, it is placed in one of the queues based on its priority type. The packets are
extracted from these queues and they are forwarded to the network output accord-
ing to the Deficit Round Robin (DRR) algorithm. When a packet is forwarded to
the output then the weight of the particular queue is decreased according to the
packet size.

Authors in I. Anagnostopoulos et al. [2] tested the network application with two
microcoded DMMs generated by their framework under four different platform con-
figurations. The description of the microcode DMM is depicted in Table 8.2. Column
2 depicts the application-specific characteristics (Number and type of fixed size freel-
ists) of each of the selected DMMs.

The topology used for the evaluation of the middleware acceleration is a 2×2
NoC. Nodes (0, 0), (0, 1), (1, 0) are processing nodes with their own local memory.
Specially each of (0, 1), (1, 0) execute 2 threads, one that handles dynamic data
and another that handles only static data. Node (0, 0) executes only one thread that
handles dynamic data. Node (1, 1) is a memory node that serves all requests that can’t
be handled by local memory. For local memories the Heap size is 4 KB(2 KB for fixed
lists and 2 KB for free lists). For the memory node the Heap size is 32 KB. For the
selected topology four different DMM configurations were implemented depending
on memory distribution over the platform. Directed edges present that an allocation
request is possible to the destination from the source node while weights, based on
PTs,d , show the priority of choosing the destination node (0 = highest priority, 3 =
lowest priority).

• Configuration 1: Pure Distributed Memory. In pure distributed memory configu-
ration (Fig. 8.8), each node sends allocation requests for dynamic data to its Local
Heap. There is no Global Heap.
• Configuration 2: Centralized single Heap. In centralized single Heap configura-

tion (Fig. 8.9), each node sends allocation requests for dynamic data only to Global
Heap (1, 1). There are no Local Heaps.
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Table 8.2 Description of the Selected DMM Configurations [2]

Code size (# microcode instructions)

DMM Description Configuration 1 Configuration 2 Configuration 3 Configuration 4
FixList0(block =

40B)

FixList1(block =
1460B)

1407 485 1736 1859

DMM 1 FixList2(block =
1500B)

Generic heap
FixList0(block ∈
[0B, 40B])

FixList1(block ∈
[1280B, 1460B])

DMM 2 FixList2(block ∈
(1460B, 1500B])

1467 485 1796 1919

FixList3(block =
92B)

Generic heap

PM

PM PM

Memory

0 0 0

Fig. 8.8 Pure Distributed Memory [2]

• Configuration 3: Distributed multiple-Heap with global Heap. In distributed
multiple-Heap with global Heap configuration (Fig. 8.10), each node first sends
allocation requests to its Local Heap. If Local Heap is not able (due to lack of
space) to serve any more allocation requests, the request then is sent to Global
Heap (1, 1).
• Configuration 4: Memory distribution-aware multiple-Heap with global Heap.

In memory distribution-aware multiple-Heap with global Heap configuration
(Fig. 8.11), each node first sends allocation requests to its Local Heap. If Local
Heap is not able (due to lack of space) to serve any more allocation requests, then,
according to priorities, the Global Heap or the Local Heap of another node is
selected in order to serve the allocation request.
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Memory
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Fig. 8.9 Centralized single Heap [2]

PM

PM PM

Memory

0 0 0

1 1 1

Fig. 8.10 Distributed multiple-Heap with global Heap [2]

For the two selected DMMs and for each of the four aforementioned configura-
tions, authors in I. Anagnostopoulos et al. [2], compared the microcode implemen-
tation against the equivalent C implementation on the LEON3 processor in terms
of: (i) the cycles performed until a Heap memory overflow event appears, (ii) the
DMM event distribution and (iii) the microcode performance. According to Fig. 8.12,
when DMM is aware of the memory distribution, the time in which Heap overflow
appears, increases. Specifically, configuration 4 performs 7×more cycles for DMM
2 compared to configuration 1. Above each bar the actual count of served DMM func-
tions (Local Heap/ Global Heap) is presented until Heap memory overflow appears.
Additionally, microcode implementation serves the same number of DMM events in
fewer cycles, performing faster, up to 25%, than its corresponding C implementation.

Figure 8.13 shows: (i) the average accelerator cycles, (ii) the cycles spent due to
memory stall and (iii) the average energy consumption (pJoule) consumed per DMM
function for DMM 1 and 2.

Configuration 1 even though it is the fastest one, it is the first one that consumes all
the available memory for handling dynamic data, and since the system is not available
to provide any additional memory, and hence the system fails. Configuration 2 is the
slowest since most of time is spent on synchronization and lock memory issues.
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Fig. 8.11 Memory distribution-aware multiple-Heap with global Heap [2]

Performance comparison and DMM event distribution
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Fig. 8.12 Performance comparison and DMM event distribution [2]

Configuration 3 offers good performance but Configuration 4 is the best among all
due to the bigger variety of available heaps. However, Configuration 4, consumes
approximately 25% more energy in comparison to Configuration 1 due to the often
communication for detecting the most available Heap to use.

Questions

8.1 What is the difference between software and middleware DMM implementations?
8.2 Why hardware DMM cannot be considered as a wide method for serving alloca-
tion requests?
8.3 Name the basic decision blocks for building a dynamic memory manager.
8.4 Name some middleware services provided in NoCs.
8.5 What is the message passing technique and how can it be used for microcoded
DMM?
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Fig. 8.13 Average cycles and energy consumption per DMM event [2]

8.6 Is cache coherence essential for microcoded dynamic memory management in
DSM NoC platforms?

Problems

8.7 Transform the BEST, LIFO and EXACT fitting policies from C to microcode
pseudocode.
8.8 Assume a 3×3 torus NoC. Build the appropriate priority tables from the example
depicted in Fig. 8.6.
8.9 Explore the computational effort and cost for handling priority tables in an 8×8
and 10×10 NoC. Will there be a delay problem? Provide an appropriate solution.

Projects and Lab Exercises

8.10 Design and simulate a cache coherence protocol for DSM NoC platforms.
8.11 Explore the power consumption of different fitting policies while allocating
memory in a 3×3 NoC.
8.12 Explore the power consumption of different fitting policies while allocating
memory in a 3×3 NoC.
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Chapter 9
On Designing 3-D Platforms

Abstract Several new topologies for on-chip interconnect networks are supported
by vertical integration. These three-dimensional (3-D) topologies improve the per-
formance of an on-chip network primarily in two ways. The length of the physical
links connecting the switches of the network is shorter. Additionally, the data can be
routed across the on-chip network through a smaller number of switches. 3-D NoC
topologies include two different types of physical links implemented with horizontal
and vertical interconnects. Among others, these links exhibit differentiations in terms
both of physical, as well as electrical characteristics. Though a number of topology
exploration frameworks for quantifying the potential improvements from this new
design paradigm, the assumptions made from the majority of them usually leads to
results with considerable variation as compared to the actual 3-D platforms. On the
other hand, there are only a few CAD tools for designing 3-D chips (e.g., R3Logic
[1]). Throughout this chapter we introduce a framework for quantifying the potential
gains of employing this new design technology onto digital designs. In contrast to
relevant approaches, which are mainly based on models from academic tools, the
solution discussed here is based on Cadence toolflow [2].

9.1 3-D Integration

Traditional technology scaling has been the engine fueling the ever increasing
trend toward system miniaturization and functionality integration. It is unfortunately
running out of steam, though, as requirements are becoming more stringent and
physical/manufacturing limitations are being encountered. Hence, integrating more
functionality in a smaller form factor with lower power consumption pushes tra-
ditional semiconductor technology scaling to its limits. This has generated many

This chapter was contributed by Dionysios Diamantopoulos, Kostas Siozios, George Econo-
makos, and Dimitrios Soudris of the School of ECE, National Technical University of Athens.
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discussions concerning the end of device scaling as we know it, and has hastened the
search for solutions beyond the perceived limits of current 2-D architectures.

Stacking multiple die in the vertical axis and interconnecting them using very
fine-pitch Through-Silicon Vias (TSVs) enables the creation of chips that combine
different process technologies and exhibit higher performance. 3-D chip stacking is
touted as the silver bullet technology that can keep Moore’s momentum and fuel the
next wave of consumer electronic products. This chapter introduces a framework
that enables rapid evaluation of 3-D SoCs with existing physical design tools.

Along with the technology updates, there are several published works dealing with
the 3-D physical design problem [3, 33]. Among others, tools for partitioning, floor-
plan [4], placement, and routing for 3-D architectures, have been proposed. Most
of them apart from wire-length reduction also address issues related to reliability
and thermal [5] that become important for the implementation of 3-D stacked ICs.
Moreover, from modeling electrical characteristics, thermal and cost modeling is
also an important design issue [6].

A methodology for evaluating the impact of 3-D microarchitectural designs on
overall system performance is presented in [7]. The developed automated physical
design and architecture performance estimation flow for 3-D systems includes tools
for 3-D floor-planning, routing, and thermal via insertion.

Existing approaches for physical design pay effort to improve the performance
metrics of 3-D architectures by letting systems components to be swapped among
dies. However, this stems from the assumption that all stacked dies are made in the
same process technology. Hence, heterogeneous integration is not supported by the
majority of the algorithms/tools presented in literature.

Modeling of 3-D stacks is also receiving attention. Apart from studying the elec-
trical characteristics, thermal and cost modeling are becoming significant issues. An
industrially-oriented cost analysis tool for the manufacturing of 3-D ICs is presented
in [8]. It evaluates the cost of a given TSV process flow by taking into account the
capital investment needed for 3-D enabled foundries, as well as operating costs and
process yield to evaluate the overall cost of 3-D stacks. A similar work for evaluating
a number of performance and cost metrics regarding 3-D stacks can be found in
[9]. Thermal modeling [10–12] is also gaining a lot of attention mainly due to the
increased power density that comes with 3-D integration.

These approaches are based almost exclusively on academic tools. On the other
hand, the only known commercial framework for supporting the design of 3-D SoCs
is provided by R3Logic Corporation [1].

The last major track is case studies that illustrate the advantages offered by 3-D
integration at system-level performance. The majority of these works are focused
on optimizing memory organizations, where the benefits of going to a 3-D system
become clearer (due to higher bandwidth).

In this chapter, we introduce a novel framework for supporting rapid evaluation
of 3-D SoCs with the usage of existing 2-D CAD tools. Such a framework is crucial
even before physical design tools for the 3-D domain become commercially available,
since it provides a good estimation about the potential benefits from designing 3-D
chips.
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For demonstration purposes we depict how this framework is applicable on deriv-
ing 3-D instances of two test-cases. Specifically, the first of them affects an IP core,
namely the LEON3 processor [13], whereas the second one provides results for a
NoC-based interconnection scheme based on 16 routers.

9.2 Problem Formulation

In this section, we formulate the problem of implementing a complex digital
system with 3-D process technology. More specifically, the problems we tackle
are: (i) the 3-D stack generation, and (ii) the physical implementation of 3-D
Stack.

Definition: Application Graph
We consider as application graph a directed graph AppG(F, N ), where each vertex
fi ∈F represents an application’s functionality, while the directed edge n(i, j)∈N cor-
responds to the communication between logic functions fi and f j . The weight of the
edge n(i, j) denoted as comweight(i, j), represents the communication load/bandwidth
between vertexes fi and f j .

Definition: Platform Graph
We consider as platform graph a directed graph PlatG(C, W ) where each vertex
ci ∈ C represents an element of the target architecture (e.g., logic block, processor,
memory, etc.), while the directed edge w(i, j) ∈ W represents a communication path
between the hardware elements ci and c j . The weight of the edge w(i, j), denoted
as interweight(i, j), denotes the fabricated interconnection hardware resources among
these logic blocks.

Problem1: 3-D Stack Generation
Given the application AppG(F, N ) and the design requirements (in terms of maxi-
mum number of layers, acceptable interlayer connections, power/delay constraints,
etc), find candidate 3-D stacks under different design criteria. During the 3-D stack
generation, the application’s components (li ) have to be assigned at architecture lay-
ers and then to appropriately order them to meet design constraints (i.e., minimize
power/delay/number of interlayer connections, etc). The outcome of this problem
is a directed graph, named 3-DStackG(F, L), which represents the layer (li ∈ L)
where each of the application’s functionalities is assigned to.

Problem2:
Physical Implementation of 3-D Stack Given the application AppG(F, N ), the plat-
form PlatG(C, W ), as well as the 3-D stack 3-DStackG(F, L) graphs, find a physical
implementation that meets the system’s requirements.
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Fig. 9.1 Proposed framework for supporting rapid evaluation of 3-D SoCs

9.3 Employed Framework for Quantifying 3-D Chips

Figure 9.1 depicts the proposed framework, which consists of three modular steps
in order to enable interaction with tools from similar and/or complementary flows.
More specifically, the steps of our framework are summarized as follows:

• Pre-processing Step: Verification of functional integrity for the design and extrac-
tion of its XML description.
• 3-D Stack Generation: Generation of the 3-D stack and determination of the com-

munication (routing paths) among layers.
• 3-D System Prototyping: Physical implementation of 3-D SoC and evaluation of

the derived solution.

9.4 Pre-processing Step

The first step in our methodology is depicted in Fig. 9.2. Initially, the architecture’s
HDL description (i.e., VHDL, Verilog) is simulated under various parameters and
constraints (e.g., clock period, on-chip memories organization) in order to verify
the system’s functionality. For this purpose, we employ the Cadence NC-sim RTL
simulator.

Simulation

Synthesis

Hypergraph extraction from design

Input: 
   - System’s RTL description

Output: 
   - Functional integrity for the SoC
   - System’s XML description

Fig. 9.2 Tasks for the pre-processing step
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Then, we determine the desired hierarchy for target 3-D architecture. Our frame-
work can handle different levels of hierarchy, each of which exhibits advantages and
disadvantages. For instance, a block-based system’s description leads to a coarse-
grain solution, whereas a gate-level netlist comes with a finer system implementation.
In other words, the fine-grain approach imposes the highest performance enhance-
ment for the 3-D architecture, but it also introduces the maximum computational com-
plexity for performing architecture-level exploration. For the scopes of this chapter,
we choose (without affecting the generality of proposed framework) to maintain the
system’s hierarchy among heterogeneous modules (e.g., logic, memory), while each
of them is flatten in order to improve timing constraint.

After defining the SoC’s hierarchy, the HDL description is synthesized with Syn-
opsys Design Compiler. As long as design constraints (e.g., timing slacks, DRC’s,
etc) are met, the output from synthesis is translated to an equivalent XML descrip-
tion, which corresponds to the system’s hypergraph representation. The derived XML
description is fed as input to the second step of our proposed framework, which deals
with the 3-D stack generation under the selected design constraints.

9.5 3-D Stack Generation

The 3-D stack generation takes as input the XML description derived from previous
step, which represents the SoC’s netlist after technology synthesis, and derives the
parts of application’s functionality that are assigned to each of the layers of 3-D stack.
Figure 9.3 gives the tasks for performing 3-D stack generation under the selected
design criteria. Since the decisions of this step are based both on architectural issues
(e.g., number of layers, distribution of TSVs, etc), as well as designer selections (e.g.,
timing and power specifications for target product), careful study and analysis should

Fig. 9.3 Tasks for 3-D stack generation
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be applied at each layer of stack generation because a non-optimal selection of a
former task might lead to a non-acceptable final solution.

Initially, application is partitioned into a number of subsets. During this task, both
fabrication and cost parameters are taken into consideration. Though one might think
that it is preferable that the number of subsets to be equal to the number of layers
of the target 3-D architecture, previous studies shown that such a selection leads to
sub-optimal solutions. On the other hand, if the number of subsets is higher than
the corresponding number of layers, the upcoming tool, dealing with the assignment
of application’s partitions to layers, exhibits higher flexibility to derive a solution
more closer to the optimal one. Consequently, a careful balance between the number
of derived partitions and the availability of layers should be performed, whereas
the absolute value of this parameter is application- and 3-D-chip specific. Different
partitioning algorithms, which are able to handle designs described in XML-based
format, may be employed for this purpose, such as the hmetis [14] and Tabu [15]
algorithms.

Given the number of application’s subsets, in conjunction to the availability of
layers, we can proceed with the partition to layer assignment task. A number of tech-
nology oriented selections are taken into consideration during this task. More specif-
ically, for a given layer, only technology combatable components can be assigned
to, while the layers have to exhibit sufficient area utilization.

Then, the layers are appropriately ordered to maximize the performance of derived
3-D stack. This is feasible by assigning to adjacent spatial locations over the z-
axis layers with increased interlayer signal activity. For this purpose, we pay effort
to minimize the number of interlayer communication, if this is possible. In order
to highlight this, Fig. 9.4b, c shows two alternative partition to layer assignments
regarding the application’s hypergraph depicted in Fig. 9.4a. The vertical lines in
this figure correspond to TSVs. As we can conclude, the assignment depicted in
Fig. 9.4b needs 80 TSVs (45 TSVs between Layer1 and Layer2 and 35 TSVs between
Layer2 and Layer3). On the other hand, the solution depicted in Fig. 9.4c requires

Partition #1

Partition #2

Partition #3

15

5

30 Partition #2

Partition #3

Partition #1

15 30

305

Partition #1

Partition #3

Partition #2

15 5

530

(a)               (b)               (c)               

Layer 1

Layer 2

Layer 3

Layer 1

Layer 2

Layer 3

Fig. 9.4 Two alternative solutions derived (b and c) from partitioning to layer assignment for the
same application (depicted in (a))
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only 55 TSVs (20 TSVs between Layer1 and Layer2 and 35 TSVs between Layer2
and Layer3), without affecting either the functionality of target application, or its
performance.

The application’s partitioning and layer ordering is software supported by TABU
algorithm [15]. Rather than similar approaches, which mainly perform
min-cut partitioning [14], our solution provides additional flexibility, since it is aware
also about the selected bonding technology (e.g., TSV, Face-to-Face, etc), the desired
density of TSVs (per layer) and the shape of 3-D stack (e.g., cube, pyramid, etc).
Finally, the derived solutions are evaluated with models for wire-length [16], delay
[17] and power consumption [18].

Next step involves the assignment of a TSV array to each bus that connects
application’s functionalities in different layers (i.e., the colored lines in Fig. 9.4b, c).
Note that whenever a bus needs to be routed in layers i and j , silicon area equals to
the area occupied by the TSV array has to be reserved in both layers. Although our
framework can also handle distinct TSVs, throughout this study we select to employ
arrays of TSVs because they introduce fewer constraints to routing algorithm [19].
Then, the TSV arrays that provide bus connectivity between adjacent layers i and j
are connected through special purpose routing paths, named TSV networks. As we
will discuss later, these networks are actually implemented with additional metal
layers with tunable RLC characteristics.

9.6 3-D System Prototyping

The last step in our framework, as it was depicted in Fig. 9.1, deals with the system
prototyping in order to derive the final 3-D stack. Figure 9.5 gives the tasks applied
during this step. More specifically, during this step we perform floor-planning, power
and ground network generation, placement of physical library cells, clock tree syn-
thesis, and global/detail signal routing with the Cadence SoC Encounter tool.

The main differentiation of the flow discussed throughout this chapter, as compared
to approaches found in relevant references affects the employed toolset. Specifically,

Input: 
   - SoC design with TSV networks
   - Design specifications

Output: 
   - 3-D SoC  
   - Evaluation metrics

Post-layout Simulation (Cadence Incisive Simulator)

Post-layout Power analysis (Synopsys PrimeTime PX )

Timing Analysis (Cadence Static Timing Analysis Engine)

Physical Design (Cadence SoC Encounter)

Fig. 9.5 Tasks for 3-D system prototyping
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our framework is software supported by a well-established 2-D commercial flow
provided by Cadence [2]. However, since it is not possible to modify the function-
ality of these tools (their source code is not available), we have to make them aware
about the additional flexibility imposed by the third dimension through appropriate
design encoding. For this purpose we introduce:

• TSV networks: These networks correspond to routing paths that provide connec-
tivity between TSV arrays assigned to adjacent layers. Note that during physical
implementation, our framework preserves that TSV arrays assigned at consecu-
tive layers are aligned. This is possible by forcing the placement of TSVs to the
same relative (x , y) co-ordinates between adjacent layers. The TSV networks are
actually implemented through additional metal layers inserted to the technology
library file, while their total resistance (R), capacitance (C), and inductance (L)
values correspond to the TSV’s RLC parameters.
• Virtual layers: Our framework assumes that target 3-D SoC consists of a number

of virtual layers, each of which contains hardware resources assigned to different
physical layers of the 3-D stack. This enables the usage of existing 2-D physical
design tools in order to evaluate the performance enhancement of 3-D chips.

After 3-D physical prototyping, we evaluate the efficiency of derived solution
by applying timing analysis. For this purpose we employ Cadence Static Timing
Analysis Engine, while for shake of completeness the analysis is performed both in
advanced, as well as after clock tree synthesis and architecture’s routing. In case,
the derived 3-D stack does not meet system’s constraints/specifications, a number of
design optimization could be applied for additional improvements.

Then, we verify the functional integrity of physical design by applying a post-
layout simulation with Cadence Incisive Simulator. For this reason, the delay for all
the architecture’s routing paths is extracted in SDF format (Standard Delay Format),
and then we appropriately annotate the delay values for TSV networks. Note that
the annotation of delay values for TSV networks is an important task, since these
routing paths exhibit the RLC characteristics of the selected TSV technology. For
the scopes of this letter, the electrical characteristics for TSV networks are retrieved
from commercially available TSV models [20].

Furthermore, our framework supports the evaluation of 3-D SoCs in term of power
consumption by applying a post-layout analysis with Synopsys PrimeTime PX tool.
The inputs to this analysis are a trace file that contains signal activities in VCD (Value
Change Dump) format, as well as the annotated SPEF (Standard Parasitic Exchange
Format) file with extracted parasitic values for all the design’s resources.

Another important aspect of the 3-D system prototyping step is the capability
of going back and changing already taken decisions. Flexibility is very important,
because this methodology is meant to be used for fast search-space exploration. If
the resulting 3-D chip does not meet the system specifications, there is a feedback
loop back to the partitioning step to allow designers to modify some of the decisions
already made, like using different IP blocks or different die assignment options. A
high-level estimation of performance metrics (i.e., area, yield, power, delay, etc) is
needed to assess compliance to the specification.
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9.7 Case Study 1: Implementation of a 3-D Instance for LEON3
Processor

This section depicts how it is possible to employ the proposed framework for design-
ing a 3-D instantiation (with two layers) of LEON3 processor [13]. The core of
LEON3 (shown at Fig. 9.6) is a synthesizable 32-bit processor compliant with the
SPARC V8 architecture [21] and configurable through VHDL generics. We instan-
tiated a single-core processor attached as a master to the AMBA Advanced High
Performance bus (AHB). The processor has 7 pipeline stages, while the internal
instruction and data cache include 1 set of 4 KB each (Harvard architecture).

Since the target architecture is an embedded system, our methodology was tuned
to derive a low-power solution. Figure 9.6 depicts the block diagram of LEON3
processor, as it is retrieved after the 3-D stack generation step. Different colors in
this figure denote blocks assigned to different (virtual) layers. Though additional
3-D stacks can be derived from TABU algorithm [15], the selected one corresponds
to Pareto optimal solution (maximum performance enhancement with the minimum
fabrication cost in terms of number of layers and TSVs).

The synthesis of LEON3 processor is performed with Synopsys Design Compiler
at 130 nm CMOS technology under a timing constraint of 4.35 ns (or 230 MHz).
The derived netlist consists of 38,988 standard cells, 42,626 nets, and 110 I/O ports.
Figure 9.7 gives the output from floor-planning, assuming a 3-D device consisted
of two layers. In this figure, red and green color dots denote arrays of TSV and
their landing blocks assigned to virtual layer1 and layer2, respectively, whereas the
TSV networks are depicted with blue color lines. Similarly, red and green color lines

Fig. 9.6 Block diagram for the Leon3 processor
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TSV blocks (Layer 1) Landing area (Layer 2)

Connection among TSV and IP blocks (Layer 1)

Connection among TSV and IP blocks (Layer 2)

TSV networks

Fig. 9.7 Example of designing a 3-D instantiation of LEON3 processor

Table 9.1 Electrical characteristics for TSVs [20]

Diameter Min. Pitch Resistance Capacitance Height

1.2 µm 4 µm 0.35 � 2.5 fF 3–9 µm

correspond to intralayer connections among arrays of TSV and the rest hardware
components found in Virtual layer1 and layer2, respectively.

Table 9.1 summarizes the RC parameters for the selected 3-D bonding technology
used during the evaluation procedure. We have to mention that the proposed method-
ology, as well as the tools that support the evaluation of 3-D SoCs supports also more
advanced technologies both for each layer (e.g., 90 nm, 65 nm, 45 nm, etc), as well
as for TSVs.

For evaluation purposes we use a set of data intensive benchmarks, which are
fundamental kernels in various DSP applications (such as MPEG-4, JPEG, filtering,
and H.263). In particular, we used five motion estimation algorithms: full search
(FS), hierarchical search (HS), three-step logarithmic step (3SLOG), parallel hierar-
chical one-dimensional search (PHODS), and spiral search (SS). It has been noted
that their complexity ranged from 60 to 80 % of the total complexity of video encod-
ing (MPEG-4) [22]. In addition, we used the 1-D wavelet transformation, cavity
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Table 9.2 Employed DSP kernels

DSP kernel Clock cycles Simulated Computational complexity Algorithm
time (ms) input size

3SLOG 19,748,213 157 M × N (8 log2(p)+ 1) 144× 176
FS 7,368,117 71 (2p + 1)2 × N × M 144× 176
PHODS 13,334,375 120 6× M × N × log2(p) 144× 176
SS 7,439,388 72 (2p + 1)2 × N × M − S 144× 176
Cavity 23,777,500 216 2NRUNS[GB+N×M+(N−

2 GB)× (M − 2 GB)×
64× 64

(4 GB+ NB+ 1)]
HS 9,603,875 93 N × M × [ (2z+1)2

16+45/4 ] 144× 176

MMUL 5,894,285 57 O(n3) 50× 50
FFT 8,428,398 91 �(N log(N )) 512 points
Wavelet 6,035,932 56 15horl1 × verl1 + 0.5×

verl2×
256× 256

(57horl2 + 15)+ 15×
verl3 × (horl3 + 2)+
75verl4 × horl4

Bubbles 5,595,728 46 O(n2) 1,000 elements

detector, and Fast Fourier transformation (FFT) algorithm. We also incorporated
basic benchmarks such as Matrix Multiplication and Bubble-sort sorting algorithm.

Table 9.2 summarizes the employed DSP kernels used during the evaluation pro-
cedure. At this table, horli and verli corresponds to the i-layer horizontal and vertical
space, respectively. W corresponds to the width, N ×M is the image size, p defines
the search space parameter. NRUNS, G B, and N B give the number of loops, the shift
parameter, and the block size, respectively.

These benchmarks were implemented in C language and compiled to LEON3
binaries with BCC cross compiler. The binaries were firstly fed to TSIM LEON3
instruction-level simulator [22] for functional verification and resource utilization at
host-machine. For instance, Cavity detector algorithm for an input of 64× 64 pixels
image takes 69 hours simulation time, whereas it requires 58 GB of hard disk space
for VCD storage and up to 800 MB physical RAM, on a host machine with Intel
Core2 Duo processor and 4 GB RAM. On the other hand, this simulation in TSIM
environment is completed in less than 3 minutes.

Table 9.3 gives some technical details about the physical implementation of
LEON3 processor. Based on these results we can conclude that the derived 3-D
architecture reduces total wire-length by 36 %, as compared to the corresponding
2-D system implementation. Since throughout this study, we focus on designing a
low-power instantiation of LEON3 processor, the wire-length reduction is expected
to come with considerable power savings, without compromising the performance
of derived architecture.

For evaluation purposes, the efficiency of derived 3-D architecture is quantified
with a number of DSP kernels. Table 9.3 provides also results about the performance
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Table 9.3 Metrics about the physical implementation

Characteristics 2-D system 3-D system
Layer 1 Layer 2
(Logic) (Memory)

Wire-length (µm) 855,637 530,443 100,440
Half-perimeter (µm) 823,033 495,010 97,527
Number of TSVs 0.00 817 817
Area for TSVs (µm2) 0.00 24.7× 24.7 24.7× 24.7
Aspect ratio 1.00 1.00 1.00
Area per layer (mm2) 2.89 1.30 1.53
Operation frequency (MHz) 230 230
Power consumption (mW) 53.96 43.30

and average power dissipation of LEON3 processor. Note that the performance
between 2-D and 3-D architectures is constant, since we assumed same through-
put. However, the wire-length reduction imposed by the usage of 3-D integra-
tion leads to average power savings 20 %, as compared to the corresponding 2-D
implementation.

9.8 Case Study 2: Implementation of a 3-D NoC

The existing approach on designing 3-D NoCs, as it is discussed in the majority
of relevant approaches, affects uniform networks consisted solely of 3-D routers.
Assuming a 3-D mesh topology, these routers, apart from the direct connection to
their four neighbors assigned to the same layer, also provide connectivity to vertically
aligned routers (upper and lower layers).

Although such a selection leads to a “uniform” underlying hardware, however,
it is not always the most efficient solution. Specifically, since a NoC is usually an
application-oriented communication infrastructure, it is strongly recommended to
study carefully the demand for interlayer communication.

Toward this direction, we performed application mapping onto a homogeneous
mesh 3-D NoC. The optimization goal during application mapping for this analysis
is the minimization of routing traffic, while we are also preserving the proper appli-
cation’s functionality (in order to avoid packet conflicts). For this study, we employ
4 different applications from the multimedia domain:

• Video Object Plane Decoder (VOPD) is a digital signal processing application
that has been proposed for use on NoC and studied before [23, 24]. This applica-
tion offers quality video transition with decent bandwidth performance. The tested
VOPD decoder includes 16 nodes, such as two length decoders, an AC-DC pre-
diction, an ARM processor, two memory components, and a VOP reconstructor.
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• Multi-Window Display (MWD) is another digital signal processing application
[25], which consists of 12 nodes and it is also suitable for a NoC architecture.
• MPEG-4 is a broadly used protocol for audio and video encoding [26]. A hard-

ware encoder and decoder consist of many components, so a NoC approach is
suitable. The employed implementation of MPEG-4 has 12 nodes, including var-
ious processing elements, such as a video unit, an audio unit, a RISC processor, a
med CPU, a binary alpha block, and three SRAMs.
• The last case study is a multimedia system (MMS) [27] consisting of 25 nodes,

including several memories and DSP processors.

As we will discuss more thoroughly in the experimental results section (please
refer to Figs. 9.13, 9.14, 9.15 and 9.16), none of these applications requires vertical
connectivity across all the routers, since such an approach. Thus, it is preferable to
employ an architecture, where in case there is no demand for vertical connectivity
inside a router, then this 3-D router could be replaced with a 2-D one, without
affecting the final application mapping (since there is no change in the data traffic).
On contrast, due to the simpler architecture of a 2-D router, as compared to a 3-D one,
such a selection is expected to impose mentionable gains in number of transistors
for the entire system, which in turn introduces performance and power consumption
enhancements.

In addition to that, connections between routers assigned to different layers are
actually implemented through TSVs. Each of these TSVs occupy a significant amount
of silicon area, as compared to a gate [20].

Though there are some prior works on discussing issues related to design of het-
erogeneous 3-D NoCs [3, 28–30], these approaches exhibit a number of limitations,
due to the fact that are based solely on abstract models. Specifically, both the perfor-
mance of retrieved NoC, as well as its power/energy dissipation usually is retrieved by
counting the hops (connections between adjacent routers) that a packet has to traverse
in order to be delivered from source to destination nodes. Also, these approaches do
not take into consideration constraints posed by the selected 3-D technology, and
consequently they usually lead to architectural solutions that are not possible to
be fabricated (e.g., due to the excessive amount of TSVs). On the other hand, the
experimentation throughout this work is performed with the usage of Cadence SoC
Encounter tool, which was appropriately tuned (as we discuss in upcoming section)
in order to be aware about the vertical connections. Such a selection can guarantee
that the derived results are closer to those foe 3-D chips.

The usage of introduced framework enables the design of efficient heterogeneous
NoCs, consisted of a mixture of 2-D and 3-D routers. This section introduces the
architectural organization of these routers, while it also provides an overview of
the entire communication scheme. Two different types of routers are considered in
the target 3-D NoC. A 2-D router can be used where an incoming routing track is
connected to wires on the same layer (Fs = 3). Specifically, the router’s flexibility,
denoted as FS , gives the number of directions to which each incoming wire can be
connected. Alternatively, a 3-D router supports connections to the third dimension
(upper and lower layers, Fs = 5).
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Fig. 9.8 Example for an application’s communication graph

In order to depict the differences between these two routers, we assume an
application’s task graph (depicted in Fig. 9.8) mapped onto a 3-D chip consisted
of five layers, whereas the communication between nodes is provided through a
NoC infrastructure. The arrows in this figure denote links between adjacent routers,
either across the horizontal, or vertical, direction. As we can conclude from this
diagram, none all of the routers exhibit requirement for data transfer between lay-
ers assigned to adjacent layers, and hence this is possible to employ a heterogeneous
3-D NoC.

Figure 9.9 shows two alternative assignments of 2-D and 3-D routers for this NoC.
Specifically, the solution depicted in Fig. 9.9a corresponds to the approach which
is widely accepted up to now to relevant literature, whereas the second solution
(Fig. 9.9b) highlights the concept of incorporating different flavors of 3-D routers, as
it is proposed by the heterogeneous NoC. More specifically, the main differentiation
between these two approaches affects the usage of three different flavors for 3-D
routers:

• 3-D Router1: It supports connectivity only for links from lower to higher layer
(marked as “1” in Fig. 9.9b). Since an incoming packet can be routed to four
different directions (note that the input and output ports could not be the same in
order to avoid packet deadlocks), the router’s flexibility is Fs = 4.
• 3-D Router2: It supports connectivity only for links that realize connections from

higher to lower layers (marked as “2” in Fig. 9.9b). Similar to previous case, this
router has Fs = 4.
• 3-D Router3: It supports connectivity both for bidirectional links with Fs = 5

(from lower to higher layer and vice versa).

Though these scenarios lead to valid communication schemes for the employed
example, i.e., they provide exactly the same data transfer between source and
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Fig. 9.9 Two different NoC flavors for the example discussed in Fig. 9.8: a consisted only of 3-D
routers for interlayer communication and b the proposed solution

destination nodes, however, the two solutions depicted at Fig. 9.9 exhibit remarkable
variations both in performance (maximum operation frequency and power/energy
consumption), as well as the occupied silicon area. Moreover, since the scenario
depicted in Fig. 9.9a incorporates additional TSVs, it introduces constraints regard-
ing the yield and fabrication cost.

The basic component of the proposed interconnection architecture is the NoC
router. This architectural concepts of this router were already discussed in earlier
chapter (please refer to Chap. 2), however, for the scopes of the designing 3-D
NoCs, they should be appropriately extended in order to handle also connections
between adjacent layers. Specifically, for regular 2-D NoCs, a typical router has
five ports (one port is assigned to the attached node, whereas the remaining ports
are used for connecting the neighbors across the four directions). Similarly, as we

http://dx.doi.org/10.1007/978-1-4614-4274-5_2
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Fig. 9.10 Architectural template for a 3-D router

have already mentioned, in case we have a 3-D NoC, then a typical router has seven
ports (the two additional ports are employed to provide connectivity across the
vertical direction).

Figure 9.10 gives the simplified block diagram for a 3-D router. The inputs from the
interface (as they were retrieved after a Read operation), as well as the corresponding
inputs from the attached node, are stored to a buffer of stalled packets. This buffer
contains those packets which could not be routed to any output of the router, because
these outputs were occupied by other packets. Furthermore, as only one packet is
routed in a clock cycle, this buffer also contains the remaining incoming packets. The
selection of output direction for an incoming packet/flit is defined from the Routing
Decision Mechanism (RDM) by applying the employed routing algorithm.

Algorithms 9.1 and 9.2 give more details about the procedure for deciding the
optimum output port for an incoming packet under to constraint of minimization
on-chip traffic. Apart from this modified ZXY algorithm, the heterogeneous NoC
derived from our framework could also support more flexible routing algorithms if
their functionality is appropriately encoded in the router’s description.
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Algorithm 9.1: Employed routing algorithm for the Routing Decision Mecha-
nism (RDM).

Algorithm RouterMain Data: NewPacketsArray
Data: StalledPacketsArray
Result: Packet routing
Begin
NewPacketsArray← Read packets from neighbor routers;
NewPacketsArray← NewPacketsArray + Read packets from nodes;
foreach StalledPacket in StalledPacketsArray do

PacketRoute (StalledPacket);
if (StalledPacket is routed) then

StalledPacketsArray.Remove(StalledPacket);
end

end
foreach NewPacket in NewPacketsArray do

StalledPacketsArray.Add(NewPacket);
end
End

Algorithm 9.2: Pseudocode for the “PacketRoute” function.
Function PacketRoute Data: Packet
Data: Total number of ports per Router
Data: Router port which received Packet
Result: Router port for sending Packet
Begin
if (Packet reached Destination Node) then

if (Destination Node’s input ports are NOT occupied) then
Send Packet to Destination Node;

end
end
else

// Excludes the Packet from return to the sender’s router.
// This prevents deadlocks.
ValidDirections← Total Router Sides - Router side which received Packet;
foreach Direction in ValidDirections do

// Priority is given to Z axis
if (neighbor router not occupied) then

BestDir← min(Cost(BestDir), Cost(Direction));
end
if (BestDir is found) then

Send packet to neighbor router denoted by BestDir; Mark the
neighbor router as occupied;

end
end

end
End
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9.8.1 Evaluation of 3-D NoC

This subsection discusses a number of experimental results that prove the efficiency of
the proposed solution. For demonstration purposes, four applications were employed,
as they were described in Sect. 9.8. Different evaluation metrics are employed towards
this goal, including both fabrication-oriented, as well as functionality-oriented para-
meters. All the results summarized in this section were retrieved with the usage of
TMSC 45 nm process technology.

Initially, we quantify the efficiency of introduced 3-D router, as compared to the
corresponding 2-D implementation, as we modify the number of local ports. The
number of these local ports correspond to the nodes attached to each router. Note
that the case Node = 0 corresponds to a scenario, where the router is only connected
to the four (or six) adjacent routers, depending if it is 2-D, or 3-D, respectively. The
results of this analysis are summarized in upcoming figures.

More specifically, Figs. 9.11 and 9.12 quantify the efficiency of each router in
terms of latency and power consumption, as we modify the number of local ports.
Based on Fig. 9.11, we can conclude that on average the 3-D router exhibits 32 %
lower latency, as compared to the corresponding 2-D implementation. Similarly,
even though it seems that the power profile differs between 2-D and 3-D routers,
however, the average power consumption for the studied scenarios is the almost the
same (29 mW).

After quantifying the building blocks of the NoC, this subsection studies also
the performance metrics for implementing the four different applications onto NoC-
based platforms. Figs. 9.13, 9.14, 9.15, and 9.16 plot the application mapping onto
the minimum 2-D, as well as the proposed heterogeneous 3-D NoCs, consisted of

Fig. 9.11 Evaluation of 2-D and 3-D router in term of latency
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Fig. 9.12 Evaluation of 2-D and 3-D router in term of power consumption
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Fig. 9.13 Mapping of VOPD application onto: a 2-D NoC and b the proposed heterogeneous 3-D
NoC platform

two layers. The term minimum corresponds to the smaller number of routers that
are required for performing application mapping. For both studies mesh topologies
are assumed, whereas our framework for designing heterogeneous 3-D NoCs is also
applicable to any other topology (either regular or irregular). Though the analysis
discussed in this section affects routers with one local port (for attaching the process-
ing, or storage node), this is not a prerequest for our solution, as we can also handle
routers with multiple nodes.

The red and blue colored circles at these figures correspond to 2-D and 3-
D routers, respectively. Similarly, the directed red colored arrows denote packet
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Fig. 9.15 Mapping of MPEG-4 application onto: a 2-D NoC and b the proposed heterogeneous
3-D NoC platform

transfers between source and destination routers assigned to the same layer, whereas
the blue color arrows correspond to data transfer between routers assigned to dif-
ferent layers, and hence the data transfer is realized through TSVs. The weights at
these arrows correspond to the number of packets from source to destination nodes.
Moreover, at these figures, some locations at the grid are marked with shadow color.
In contrast to relevant approaches dealing with mesh topologies, throughout this
chapter we eliminate the number of routers assigned to these locations (marked with
dash color), where no IP node is assigned. Such a selection results to a more effi-
cient architectural solution, since it achieves higher operation frequencies and lower
requirements for silicon area. As we discuss later, the additional complexity for per-
forming packet routing at heterogeneous 3-D NoCs does not affect the performance
of the whole architecture.



www.manaraa.com

9.8 Case Study 2: Implementation of a 3-D NoC 229

2-D Router 3-D Router

38016 116873

197

33848

33848

75205

16691

33848

16691

38016

7061

7061

80

28248

26924

25640640764

144
641

3672

197

3672

3672

75584

38016

38016

80

25

28265

70657065

4 1 7

623

5

8

9

10

11 121614

17

13

22

18

20

19

21

15

23

2425

CPU1-MC-ADD

MEM1-FS0-FS1-FS2

DSP6-Filter-
MDCT

CPU2-Iterative 
Enc.1 and 2

ASIC2
Synchronization Mux

ASIC5-
Synchronization DSP6-IDCT

DSP4-Huffman 
Dec. 1 & 2

DSP4-FP

DSP5-FFT-
PsychoAcoustic Model

ASIC3-Bit 
Reservoir 1 and 2

ASIC2-
Demultiplexing

MEM2-
Buffering

DSP4-VLD

DSP6-IMDCT 
SUM

ASIC1-ME

DSP1-DCT-IDCTDSP2-Q-IQ

DSP3-FP

ASIC2-VLE

DSP5-IQ

CPU2-MC ADD MEM2-FS4 FS5

DSP5-Bit 
reservoir 1&2

MEM4-
Buffering

38016 116873

197
33848

33848

75205

16691

33848

16691

38016

7061

7061

80
28248

26924

25

640640764

144

641

3672

197

3672

3672

7558438016

38016

80

25

28265

70657065

4 1 7

623

5

8

9

10

11 121614

17

13

22

18

20

19

21

15

23

2425

ASIC1-ME

DSP1-DCT-IDCTDSP2-Q-IQ

DSP3-FP

ASIC2-VLE
ASIC3-Bit 

Reservoir 1 & 2

ASIC2-
Demultiplexing

DSP5-IQ

CPU1-MC-ADD

MEM1-FS0-
FS1-FS2

DSP4-FP

CPU2-Iterative 
Encoding 1 & 2

ASIC2-Synchronization 
Mux MEM2-Buffering

MEM2-FS4 FS5 DSP4-Huffman 
Decoding 1 & 2

DSP5-FFT-
PsychoAcoustic Model

DSP6-Filter-
MDCT

ASIC5-
Synchronization

DSP4-VLD

DSP6-IDCT

CPU2-MC ADD

DSP5-Bit 
reservoir 1 & 2

DSP6-IMDCT 
SUMMEM4-Buffering

Layer 1 Layer 2

(a) (b)

Fig. 9.16 Mapping of MMS application onto: a 2-D NoC and b the proposed heterogeneous 3-D
NoC platform

Next figure plots the outcome after physical implementation for one of the studied
applications (MPEG-4), as it was derived with our methodology for designing 3-D
platforms. At this figure, we highlight the two different Virutal Layers, as well as
the connectivity between them (plotted with yellow color at Fig. 9.17b), which is
actually implemented through “Virtual networks” that model TSVs.

The optimization goal during application mapping onto different platforms was
the minimization of hops for packets routing. Towards to this direction, 3 alternative
scenarios are evaluated. More specifically, we quantify the introduced heterogeneous
approach, where 2-D and 3-D routers exist on the same NoC depending on the require-
ment for interlayer connectivity. As reference to this analysis, two more approaches
are discussed: (i) a 2-D NoC with the minimum number of routers and (ii) the corre-
sponding homogeneous 3-D NoC (similar to the one found in relevant references).
Note that the homogeneous 3-D NoC consists of exactly the same number of routers
compared to the corresponding 2-D system implementation.

The results of this analysis are summarized in Fig. 9.18. Based on this analysis we
can conclude that the existing way for designing 3-D NoCs achieves to reduce the
number of packet hops, as compared to the corresponding 2-D NoC implementation
by 29 %, on average. Such a reduction denotes the significant importance of employ-
ing the 3-D integration paradigm as a viable solution for designing products with
increased demand for connectivity. This conclusion was also derived from the major-
ity of relevant publications dealing with the topology exploration problem. However,
these approaches rarely take into account constraints and limitations posed by the
fabrication process. Specifically, the usage of 3-D routers impose a TSV assigned
to each wire that provide signal connectivity between adjacent layers. Due to the
large diameter and pitch of these TSVs, their excessive usage at 3-D designs usually
introduce area and yield overheads.

On the other hand, our proposed architectural solution has the minimum possible
number of 3-D routers in order to alleviate the consequences of these problems.
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Fig. 9.17 Physical layouts for the introduced heterogeneous 3-D NoC regarding the MPEG-4
application

Since our approach provides fewer connections to rest layers, a slight increase to
the number of hops (due to routing restrictions) could be though as affordable. This
penalty is highlighted in Fig. 9.18 for the four applications and it is about 8.5 % on
average compared to the uniform 3-D NoC approach.

Table 9.4 provides a number of implementation-oriented parameters as they are
retrieved after synthesis and physical implementation. Based on this table, we can
conclude that both the 3-D, as well as the introduced solution has aspect ratio 2 (in
order to realize the two virtual layers shown previously at Fig. 9.17). Two more para-
meters are worth in mentioning at this table. More specifically, since the proposed
solution has a combination of 2-D and 3-D routers, as compared to the 3-D approach,
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Fig. 9.18 Number of packet hops for different architectural solutions: (i) a homogeneous 2-D NoC,
(ii) a homogeneous 3-D NoC, and (iii) the proposed heterogeneous 3-D NoC

we need fewer TSVs to be fabricated in order to provide signal connectivity between
adjacent layers. However, such a selection does not impose any wirelength degra-
dation, as the proposed heterogeneous approach leads almost to an average 57 %
wirelength reduction compared to the case where all the routers are 3-D.

Next, we provide some quantification results regarding the different instantia-
tions of NoCs. More specifically, Fig. 9.19 shows the maximum operation frequency,
whereas the results about power consumption are summarized in Fig. 9.20. From
these values we can conclude that on average the proposed solution, consisted of
a mixture of 2-D and 3-D routers, exhibits higher maximum operation frequency
compared to 2-D and homogeneous 3-D by 28 % and 25 %, respectively. This perfor-
mance enhancement occurs mainly due to better manipulation of fabricated routing
wires, since we replaced 3-D with 2-D router in case there is no demand for vertical
connectivity.

Additionally, such a selective reduction of 3-D routers is expected to lead to lower
power consumption, as it is depicted in Fig. 9.20. More specifically, based on this
figure we conclude that the proposed solution achieves on average power reduction
against to uniform 2-D and 3-D NoCs 48 % and 39 %, respectively. These savings
becomes much more important, if we take into consideration the higher operation
frequencies retrieved with the usage of our solution.

Another critical issue that quantifies the efficiency of a 3-D chip affects the number
of fabricated TSVs, which is mainly tackled by the partitioning algorithm. With
the usage of our introduced design methodology, we lead to a reduced number of
interlayer connection, and hence TSVs that have to be fabricated. Of course, this
number guarantees the proper application’s functionality in terms of data throughput.
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Fig. 9.19 Maximum operation frequency for different instantiations of NoC

Fig. 9.20 Power consumption for different instantiations of NoC

Such a reduced number of TSVs in turn leads to architectures that are characterized
by higher yield and lower fabrication cost, as compared to existing approaches. The
yield of a physical layer within a homogeneous, or heterogeneous 3-D NoC can be,
respectively, described as follows [31]:
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Fig. 9.21 Process yield of homogeneous and heterogeneous (proposed) 3-D NoCs for different
number of layers

Yfully 3-D = 1
(
1+ S × D0 × Afully 3-D router

)N/S
(9.1)

Ypartially 3-D = 1
(
1+ S × D0 × Apartially 3-D router

)N/S
(9.2)

where the area of the NoC is assumed to be dominated by the area of the routers. The
parameters N and D0 denote the number of the mask layers for each layer and the
average electrical defect density, respectively. Similarly, S corresponds to the shape
factor related to D0 [31]. Based on these parameters, the total yield of a 3-D NoC
consisting of n layers can be written as:

Yt fully 3-D = Y n
fully 3-D × Y n−1

bond (9.3)

Yt partially 3-D = Y n
partially 3-D × Y n−1

bond (9.4)

where Ybond is the yield of the stacking process. Based on (9.1)–(9.4), the yield of a
homogeneous 3-D NoC and an NoC with the proposed heterogeneous interconnect
fabric are plotted in Fig. 9.21. The proposed heterogeneous NoC exhibits an improved
yield due to the significant savings in area which results by the limited use of 3-D
routers. Note that these yield expressions do not incorporate the effect of using fewer
TSVs, which will further increase the yield for the heterogeneous NoC [32].
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9.9 Conclusion

A novel framework for supporting rapid evaluation of 3-D SoCs was introduced.
For the scopes of this chapter, the proposed methodology was applied to design
a 3-D instantiation of LEON3 processor under low-power constraints, as well as
a heterogeneous 3-D NoC. Experimental results with various DSP kernels prove
the effectiveness of proposed solution, since it leads to significant performance and
power gains.

References

1. http://www.r3logic.com/
2. http://www.cadence.com/us/pages/default.aspx
3. V. Pavlidis, E. Friedman, Three-dimensional Integrated Circuit Design (Morgan Kaufmann,

San Francisco, 2008)
4. L. Zhuoyuan Li, H. Xianlong, Z. Qiang, C. Yici, B. Jinian, H. Yang, V. Pitchumani, C.

Chung-Kuan, Hierarchical 3-D floorplanning algorithm for wirelength optimization. IEEE
Trans. Circuits Syst. I Regul. Pap. 53(12), 2637–2646 (2006)

5. J. Cong, Z. Yan, Thermal-driven multilevel routing for 3D ICs, in Asia and South Pacific
Design Automation Conference (ASP-DAC), pp. 121–126 (2005)

6. G. Katti, M. Stucchi, K. De Meyer, W. Dehaene, Electrical modeling and characterization
of through silicon via for three-dimensional ICs. IEEE Trans. Electr. Dev. 57(1), 256–262
(2010)

7. B. Black, D. Nelson, C. Webb, N. Samra, 3D processing technology and its impact on iA32
microprocessors, in International Conference on Computer Design: VLSI in Computers and
Processors (ICCD), pp. 316–318 (2004)

8. Y. Deng, W. Maly, 2.5D system integration: a design driven system implementation schema,
in Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 450–455 (2004)

9. Academic tools aiming at 3-D ICs, http://proteas.microlab.ntua.gr/ksiop/software.html
10. Y. Yonghong, G. Zhenyu, Z. Changyun, R. Dick, S. Li, ISAC: integrated space-and-time-

adaptive chip-package thermal analysis. IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst. 26(1), 86–99 (2007)

11. C. Ting-Yen, S. Souri, Chi On Chui, K. Saraswat, Thermal analysis of heterogeneous 3D
ICs with various integration scenarios, in International Electron Devices Meeting (IEDM),
pp. 31.2.1–31.2.4 (2001)

12. G. Link, M. Vijaykrishnan, Thermal trends in emerging technologies, in International Sym-
posium on Quality Electronic Design (ISQED), 8 pp. (2006)

13. LEON3, http://www.gaisler.com
14. N. Selvakkumaran, G. Karypis, Multiobjective hypergraph-partitioning algorithms for cut and

maximum subdomain-degree minimization. IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst. 25(3), 504–517 (2006)

15. K. Siozios, D. Soudris, A Tabu-based partitioning and layer assignment algorithm for 3-D
FPGAs. IEEE Embed. Syst. Lett. 3(3), 97–100 (2011)

16. S. Das, A. Chandrakasan, R. Reif, Calibration of Rent’s rule models for three-dimensional
integrated circuits, in IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 12, No. 4, pp. 359–366, April 2004

17. T. Okamoto, J. Cong, Buffered Steiner tree construction with wire sizing for intercon-
nect layout optimization, in International Conference on Computer-Aided Design (ICCAD),
pp. 44–49 (1996)

http://www.r3logic.com/
http://www.cadence.com/us/pages/default.aspx
http://proteas.microlab.ntua.gr/ksiop/software.html
http://www.gaisler.com


www.manaraa.com

236 9 On Designing 3-D Platforms

18. J. Rabaey, A. Chandrakasan, B. Nikolic, Digital Integrated Circuits, 2nd edn. (Prentice-Hall,
Prentice Hall, 2003)

19. A. Sheibanyrad, F. Petrot, A. Jantsch, 3D Integration for NoC-Based SoC Architectures
(Springer Editions, Berlin, 2011)

20. S. Gupta, M. Hilbert, S. Hong, R. Patti, Techniques for producing 3-D ICs with high-density
interconnect, in International VLSI Multi-Level Interconnection Conference (2004)

21. SPARC V8, http://www.sparc.org/standards/V8.pdf
22. V. Bhaskaran, K. Konstantinides, Image and Video Compression Standards: Algorithms and

Architectures, 2nd edn. (Kluwer Academic, Dordrecht, 1998)
23. V. Ngo, H. Nguyen, H. Choi, The optimum network on chip architectures for video object

plane decoder design, in International Conference on Parallel and Distributed Processing
and Applications (ISPA), pp. 75–85 (2006)

24. S. Murali, G. De Micheli, Bandwidth-constrained mapping of cores onto NoC architec-
tures, in Proceedings of Design, Automation and Test in Europe Conference and Exhibition,
pp. 896–901 (2004)

25. D. Bertozzi, A. Jalabert, S. Murali, R. Tamhankar, S. Stergiou, L. Benini, G. De Micheli, NoC
synthesis flow for customized domain specific multiprocessor systems-on-chip. IEEE Trans.
Parallel Distrib. Syst. 16(2), 113–129 (2005)

26. I. Richardson, H.264 and MPEG-4 Video Compression: Video Coding for Next Generation
Multimedia, 1st edn. (Wiley, New York, 2003)

27. J. Hu, R. Marculescu, Energy-and performance-aware mapping for regular NoC architectures.
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 24(4), 551–562 (2005)

28. A. Bartzas, K. Siozios, D. Soudris, Three dimensional network-on-chip architectures, in
Networks-on-Chips: Theory and Practice, ed. by F. Gebali, H. Elmiligi, M.W. El-Kharashi
(CRC Press, Boca Raton, 2008)

29. I. Anagnostopoulos, A. Bartzas, D. Soudris, Application-specific temperature reduction sys-
tematic methodology for 2D and 3D networks-on-chip, in International Conference on Inte-
grated Circuit and System Design: Power and Timing Modeling, Optimization and Simulation
(PATMOS), pp. 86–95 (2009)

30. A. Richard, D. Milojevic, F. Robert, A. Bartzas, A. Papanikolaou, K. Siozios, D. Soudris, Fast
design space exploration environment applied on NoCs for 3D-stacked MPSoCs, Workshop on
Parallel Programming and Run-Time Management Techniques for Many-Core Architectures
(2010)

31. R. Weerasekera, D. Pamunuwa, L. Zheng, H. Tenhynnen, Two-dimensional and three-
dimensional integration of heterogeneous electronic systems under cost, performance, and
technological constraints. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 28(8),
1237–1250 (2009)

32. D. Velenis, M. Stucchi, E. Marinissen, E. Beyne, Impact of design choices on 3D SIC man-
ufacturing cost, in Proceedings of the Workshop on 3-D Integration, at Design, Automation,
and Testing in Europe (DATE), pp. 1–5 (2009)

33. http://3d-performance.lancs.ac.uk/

http://www.sparc.org/standards/V8.pdf
http://3d-performance.lancs.ac.uk/


www.manaraa.com

Chapter 10
The SYSMANTIC NoC Design
and Prototyping Framework

Abstract SYSMANTIC is a framework for high-level exploration, Register Transfer-
Level (RTL) design and rapid prototyping of Network-on-Chip (NoC) architectures.
From the high-level exploration, a selected NoC topology is derived, which is then
implemented in RTL using an automated design flow. Furthermore, for verification
purposes, appropriate self-checking testbenches for the verification of the RTL and
architecture files for the semi-automatic implementation of the system in Xilinx
EDK are also generated, significantly reducing design and verification time, and
therefore NRE cost. Simulation and FPGA implementation results are given for four
case studies of multimedia applications, proving the validity of the SYSMANTIC
approach.

10.1 Introduction and Previous Work

A number of NoC architectures have been implemented and evaluated in both FPGA
and ASIC platforms, among them [1]. Furthermore, frameworks and tools for high-
level exploration for NoC architectures exist [2].

In Leary [3] a holistic algorithm for NoC synthesis able to address all these
requirements together in an integrated manner was presented. However, the synthesis
methodology provided does not provide Register Transfer-Level descriptions that can
readily be used for system implementation. In Strano [4] a more complete framework
for the design of NoC is presented, but it does not include FPGA rapid prototyping.

FPGA rapid prototyping has been explored in [5], where using FPGA long links
was explored, however, the authors mention having to modify a router manually to

This chapter was contributed by Konstantinos Tatas and Costas Kyriacou from the Department
of Computer Science and Engineering of Frederick University, Cyprus, and Kostas Siozios,
Alexandros Bartzas and Dimitrios Soudris of the School of ECE, National Technical University
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insert long links, requiring less than a day. In the proposed framework, this mod-
ification would have been trivial, due to the automatic RTL generation tool. Sim-
ilarly, a 3 × 3 mesh NoC for an image processing benchmark was implemented
in [6]. In Krasteva [7] a more flexible prototyping framework was presented, which
includes RTL NoC models and also supports dynamic reconfiguration. However, our
framework also includes design space exploration starting from the target applica-
tion requirements. In short, all existing approaches either include exploration and
synthesis to RTL but not rapid prototyping, or they are based on ad-hoc NoC imple-
mentations in FPGAs in order to prove the feasibility of NoC architectures. While
certainly valid, this isolates the prototyping from the exploration phase in the design
flow.

Therefore, existing approaches, either provide exploration and design solutions
without taking rapid prototyping into account, or provide rapid prototyping without
exploration. Our work bridges this gap by introducing a novel EDA tool flow which
performs high-level exploration, automatic RTL implementations of the interconnec-
tion network and rapid prototyping using off-the-shelf FPGAs. The flow performs
high-level design exploration and selects the optimal NoC topology and application
mapping, given a set of design constraints and goals. From the selected topology,
the proposed flow automatically generates the corresponding NoC RTL code, test-
benches for RTL verification, as well as the appropriate files for rapid prototyping
in Xilinx FPGA devices, thus greatly speeding up the design, verification and pro-
totyping process, and therefore NRE cost.

Furthermore, the automation of the RTL design and rapid prototyping hides many
low-level implementation details from the designer, while still allowing him to control
important NoC parameters such as topology, router buffer size, wordlength etc. or
optimize them for specific metrics such as performance, power consumption and
area.

10.2 Exploration Methodology

The SYSMANTIC NoC exploration and implementation framework described in
[8], is depicted in Fig. 10.1. The inputs to this methodology are a set of target appli-
cations to be mapped on a NoC and a number of design constraints and goals, such
as the desired throughput, the power/energy budget and the affordable silicon area
overhead. More specifically, the target application is represented as a communica-
tion graph, where we edges denote the communication link between computational
kernels and/or memory blocks, whereas their weight gives the amount of data that
has to be exchanged between them.

The first design phase involves the application modeling and optimization. A
careful and precise analysis of application characteristics, mainly the communica-
tion bandwidth needed is essential in order to make a rough plan about the design
space and components needed by it. In order to perform the exploration for alterna-
tive topologies of NoC architectures, we have used as a basis the Worm_Sim NoC
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Fig. 10.1 SYSMANTIC exploration and implementation flow

Simulator [9] that utilizes wormhole Routing. The main objective of the methodology
is to derive an architecture, either homogeneous or heterogeneous that performs best
to the generated traffic based on the application(s) activity. For this purpose, a number
of different traffic models might be employed (e.g. random, bit reversal, butterfly, etc)
[10]. The goal during this phase is to stress the NoC and find an efficiency topology,
without conjunction points and with an acceptable trade-off between minimum delay
and energy consumption. The outcome from this step is an abstract instantiation of
the target topology.

Then, application mapping onto the target NoC-based platform is performed.
During the second step of the methodology, we also deal with the optimization of
the available communication resources. The goal is to choose an efficient routing
algorithm and a flow control mechanism, including specifications of the routers and
their number of connections with PEs that will ensure that the on-chip traffic will be
handled, according to the desired specifications. The key performance metrics here
are the average and maximum packet latency, the throughput of the network and the
communication bandwidth, while important cost metrics are power consumption of
communication on network and its overhead in the overall consumption.

We employ a bandwidth-constrained mapping algorithm [11]. The mapping deci-
sions are evaluated using a high-level NoC Simulator [12]. The simulation results
(average packet latency and energy consumption) reveal which is the NoC archi-
tecture that accommodates best the requirements of the application(s), deriving the
optimal NoC topology. We have to notice that the employed mapping algorithm is
orthogonal to any other available solution. The derived NoC can then be constructed
by appropriately configuring and connected a number of NoC Routers. The results of
this early stage high-level exploration phase are the directives that are passed to next
step and used to create the RTL description of the interconnection network. Con-
straints to this procedure are the timing, power and area specifications, in respect to
meet the desired communication (traffic) among IP cores. For the sake of complete-
ness, the derived results were also evaluated with the usage of commercial flows.

Finally, the last step in our framework deals with the validation and synthesis of the
NoC platform which result to a prototype system. The NoC components are based on
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a highly configurable at compile-time NoC Router, which can be instantiated with
different number of ports, according to the derived topology. The SYSMANTIC
framework, automatically VHDL descriptions of all NoC routers and a top VHDL
description providing the appropriate connection of the NoC routers. Furthermore, a
set of self-checking SystemVerilog testbenches that correspond to the selected topol-
ogy is also generated. The testbenches create random packets at random intervals at
random nodes, and check if they are received at the nodes they were sent to.

Moreover, in order to facilitate FPGA emulation for further validation, the archi-
tecture .mhs file of the Xilinx XPS is automatically generated based on a base template
that was developed. The automatically generated .mhs file together with the corre-
sponding NoC component RTL and the IP cores provided by XPS or third parties, can
then be implemented in an off-the-shelf FPGA with minimal designer interaction.

10.3 NoC RTL Components

The basic component of the NoC architecture is the NoC Router, designed in reusable
VHDL [13] in order to be highly configurable at compile time. For regular NoCs, it is
a typical five-port Router (one port for the processing element, and the remaining four
for connections in four directions). However, the number of ports, phit size (word-
length), flit size, packet size and buffer size are configurable, through a package
file. The Router simplified block diagram is shown in Fig. 10.2. For simplicity, the
processing element link is not shown.

The Router communication schema is shown in Fig. 10.3. As shown, a Router is
composed of a series of buffers to store incoming packets, a switch matrix imple-
menting the input/output connections and a control logic, composed of two state
machines for each port, one controlling the buffer write (RX control logic) and
the other one responsible for scheduling/synchronizing the output port (TX control
logic). The output port selector, allocates the appropriate output buffer, depending on
the incoming packet destination address. The router uses output and not input queu-
ing [14], with the modification that there is a different buffer for each path, which
results in maximum throughput for an additional buffer area penalty, a clear perfor-
mance/area trade-off. Each Router in the NoC has an ID register that contains the
address of the Router. Finally, the prioritizer block selects between buffered packets
that request the same output port in a round-robin fashion.

Furthermore, besides the generic router described above, a novel router architec-
ture based on a fuzzy-logic adaptive routing algorithm was developed and presented
in [15]. The proposed routing algorithm decides on the output port of an incoming flit
by taking into account the dynamic traffic and power consumption on neighboring
router links.

We are going to briefly describe the function of each of these components and
how they communicate with each other.

NoC RTL generation is done with a novel software tool we developed, called
NoCGen. The input to NoCGen is the output of the topology synthesis tool. The
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Fig. 10.2 SYSMANTIC 5-port router simplified block diagram (local node link not shown)

input is composed of three configuration files written in XML as shown in Fig. 10.4.
The first one named “elements.xml” contains information about the buffer sizes and
number of output ports of each of the routers. These characteristics are determined
by system-level exploration as well and consideration of the feedback coming from
the network function. The second file, “netlist.xml”, contains information about the
topology of the design, namely the way the cores are connected with each other.
The last file, “traffic.xml”, contains some samples of the traffic generated during
the execution of the above applications. The above XML document describes the
topology of Fig. 10.5.

NocGen is an XML-based tool, which generates automatically an RTL descrip-
tion of a Network on Chip with the properties described in the above mentioned
configuration files. It parses the aforementioned xml files and writes the VHDL RTL
description of the NoC including the appropriate package files, based on the router
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Fig. 10.3 Communication schema of SYSMANTIC router

Fig. 10.4 Example XML topology description

architecture template described in the previous section. These VHDL files have some
standard and some reconfigurable parts. The tool writes the reconfigurable part, which
has to do with the topology, the traffic and some of the sizes of the router according to
the specifications. Essentially, the tool instantiates routers such as the one described
in the previous section, configured and connected together according to the XML
topology description provided by the exploration tool.
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Fig. 10.5 The topology of the
NoC described in the XML
document

10.4 Verification Components

Similarly, a set of self-checking SystemVerilog testbenches for the generated RTL is
also produced by NoCGen. This facilitates the verification of the RTL code which can
be a very time-consuming process. The generated testbenches are based on an OVM-
based NoC testbench template that was developed and is configured by NoCGen by
writing appropriate package files, similarly to the RTL.

The basic components of the testbench are the generator, the driver, the DUV
interface, the monitor and the checker. The generator creates random NoC traffic,
according to the specified NoC topology and feeds it to the driver that converts them
to transactions according to the NoC flow control protocol. The DUV interface is a
wrapper that facilitates the connection of the SystemVerilog testbench to the VHDL
NoC DUV. The monitor reads the DUV response and feeds it to the checker which
compares it with the expected response. Using this template a high coverage was
achieved in short simulation time.

10.5 Rapid Prototyping Components

Finally, the architecture file (.mhs) [16] required for the rapid prototyping of the
system in Xilinx devices using XPS [17] that corresponds to the selected architecture
is automatically generated. Together with the automatically generated RTL of the
NoC and the processing element IPs, this significantly reduces prototyping and,
therefore, verification time.

NoCGen is implemented in C++. In order to parse the XML files, we used the
library xerces-c-3.0.1. Xerces is a validating XML parser written in a portable subset
of C++. It gives the ability to read and write XML data. A shared library is provided for
parsing, generating, manipulating, and validating XML documents using the DOM,
SAX, and SAX2 APIs. Xerces-C++ is faithful to the XML 1.0 recommendation and
many associated standards. The parser provides high performance, modularity, and
scalability.
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Fig. 10.6 Block diagram of MPEG-4 (12 cores)

10.6 Case Studies and Experimental Results

In order to validate the functionality of the tool flow, we consider four case studies,
one with a regular and one with an irregular topology. Prototyping was done on a
Xilinx Virtex-4 device [18].

The traffic trace as well as the position of every router on chip is derived from the
simulation results of previous step, whose task was the system-level exploration of
NoCs. The buffer depth of each router was determined by the network synthesis tool
according to the sample traffic needs but we include experimental results for various
buffer sizes in order to investigate the effect of buffer size on performance, area and
power. Measurements include power dissipated, the maximum operating frequency,
the slices and utilization for each implementation for different buffer sizes.

10.6.1 Case Study 1: MPEG-4

For the first case study, as target application we used MPEG-4, a broadly used protocol
for audio and video encoding [19]. A hardware encoder and decoder consist of many
components, so a NoC approach is suitable. The tested MPEG-4 includes various
processing elements, such as a video unit, an audio unit, a RISC processor, a med
CPU, a binary alpha block and three SRAMs. The total number of cores needed for
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Fig. 10.7 MPEG-4 area utilization

Fig. 10.8 MPEG-4 maximum frequency

the application is 12, with an equal number of routers attached to them as shown in
Fig. 10.6.

The maximum frequency at which the chip can function is 276 MHz in case of
buffer size 9. This frequency is well greater than our clock frequency (100 MHz).
Furthermore, we notice that the ratio in performance degradation in term of maximum
operation frequency is greater from buffer size 3 to 6 than buffer size 6 to 9. This is
due to the saturation, which takes place when the buffer size is 6.

Figure 10.7 shows the area utilization, in terms of registers, slices and LUTs. As
we can see in Fig. 10.7 the required resources of the chip increase as the buffer size
increases. In the case of buffer size 6 and 9 a significant percentage of the chip slices
are used (almost 90 %). A larger buffer size would take up all the chip resources.

Figure 10.8 shows the maximum operating frequency for various buffer sizes,
while Figs. 10.9 and 10.10 show the total and leakage power dissipation respectively.
It can be seen that the total power dissipation increases as the buffer size increases.
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Fig. 10.9 MPEG-4 total power dissipation

Fig. 10.10 MPEG-4 leakage power dissipation

Furthermore, as expected increase of chip temperature influences significantly the
power. For this application leakage power (Fig. 10.10) is 0.168 at 50 ◦C, 0.191 at
65 ◦C, 0.219 at 80 ◦C independent of the buffer size. The leakage power for given
temperature is constant among the different buffer sizes, because it depends mainly
on temperature.

10.6.2 Case Study 2: VOPD

Video object plane decoder is another digital signal processing application that has
been SYSMANTIC for use on NoC and studied before [20]. VOPD offers quality
video transition with decent bandwidth performance. The tested VOPD decoder
includes twelve processing elements, such as two length decoders, an AC-DC
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Fig. 10.11 Block diagram of VOPD (12 cores)

Fig. 10.12 VOPD area utilization

prediction, an ARM processor, two memory components and a VOP reconstruc-
tor. The cores needed for the application are 12 and so many are the routers as
well (Fig. 10.11). Area utilization, frequency and power dissipation are depicted in
Figs. 10.12, 10.13, 10.14 and 10.15.

As we can see the resources of the chip required increase as the buffer size
increases. In the case of buffer size 6 and 9 a significant percentage of the chip slices
are used (almost 90 %). A larger buffer size would take up all the chip resources.
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Fig. 10.13 VOPD maximum frequency

Fig. 10.14 VOPD total power dissipation

The maximum frequency at which the chip can function is 260 MHz in case of
buffer size 9. This frequency is well greater than our clock frequency (100 MHz).
Furthermore, we notice that the ratio in performance degradation in term of maximum
operation frequency is greater from buffer size 3 to 6 than buffer size 6 to 9. This is
due to the saturation, which takes place when the buffer size is 6.

The total power dissipation increases as the buffer size increases. Furthermore,
as expected increase of chip temperature influences significantly the power. For this
application leakage power is again 0.168 at 50 ◦C, 0.191 at 65 ◦C, 0.219 at 80 ◦C
independent of the buffer size. The leakage power for given temperature is constant
among the different buffer sizes, because it depends mainly on temperature.
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Fig. 10.15 VOPD leakage power dissipation

Fig. 10.16 Block diagram of MWD (12 cores)

10.6.3 Case Study 3: MWD

Multi-window display is another digital signal processing application which is also
suitable for NoC architectures and also uses twelve processing elements. The cores
needed for the application are 12 and so many are the routers as well (Fig. 10.16).

As we can see the resources of the chip required increase as the buffer size
increases (Fig. 10.17). In the case of buffer size 6 and 9 a significant percentage
of the chip slices are used (almost 86 %). A larger buffer size would take up all the
chip resources.
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Fig. 10.17 MWD area utilization

Fig. 10.18 MWD maximum frequency

The maximum frequency at which the chip can function is 260 MHz in case of
buffer size 9 (Fig. 10.18). This frequency is well greater than our clock frequency
(100 MHz). Furthermore, we notice that the ratio in performance degradation in term
of maximum operation frequency is greater from buffer size 3 to 6 than buffer size
6 to 9. This is due to the saturation, which takes place when the buffer size is 6.

The total power dissipation increases as the buffer size increases. Furthermore, as
expected increase of chip temperature influences significantly the power (Fig. 10.19).
For this application leakage power is again 0.168 at 50 ◦C, 0.191 at 65 ◦C, 0.219 at
80 ◦C independent of the buffer size. The leakage power for given temperature is
constant among the different buffer sizes, because it depends mainly on temperature
(Fig. 10.20).
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Fig. 10.19 MWD total power dissipation

Fig. 10.20 MWD leakage power dissipation

10.6.4 Case Study 4: MMS

The last case study is a multimedia system (MMS). The system contains 25 cores,
including several memories and DSP processors as shown in Fig. 10.21. In this case,
we use three routers, since the strategy according to which a router attached to each
core requires far too many resources. The clustering of routers was selected in order to
achieve traffic minimization. The existence of communication links between routers
ensures the lack of deadlock and livelock. This case study was selected because, the
NoC topology is very different from the mesh of case studies 1, 2 and 3, and it is
important to validate that the flow can support both regular and irregular topologies.

Similar to the previous case studies, Fig. 10.22 shows the area utilization in terms
of registers, slices and LUTs. As we can see the resources of the chip required increase
as the buffer size increases. But even in the case of buffer 9, only a small percentage
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Fig. 10.21 Block diagram of MMS

Fig. 10.22 MMS area utilization

of the chip slices are used (about 6 %). A larger buffer size could be used in this case,
if the traffic is to be serviced more efficiently.

Figure 10.23 shows the maximum operating frequency. The maximum frequency
at which the chip can function is 312 MHz in case of buffer size 9. This frequency is
well greater than our clock frequency (100 MHz).

Figures 10.24 and 10.25 show the total and leakage power consumption respec-
tively. The total power dissipation increases as the buffer size increases. Furthermore,
as expected increase of chip temperature influences significantly the power. For this
application leakage power is 0.165 at 50 ◦C, 0.187 at 65 ◦C, 0.216 at 80 ◦C indepen-
dent of the buffer size. Although the design is significantly smaller than MPEG-4,
the leakage values are close.
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Fig. 10.23 MMS maximum frequency

Fig. 10.24 MMS total power dissipation

Fig. 10.25 MMS leakage power dissipation
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10.7 Conclusion

A framework for the architecture exploration and hardware implementation of custom
NoC architectures was presented. The framework includes the automated translation
of the derived optimized architecture to RTL code. The flow contributes to the fast
prototyping of NoC architectures, giving the possibility for efficient generation and
debugging of NoCs. FPGA implementation measurements for regular and irregular
topologies proved the merit of the SYSMANTIC approach. Future work includes
full automation of RTL code generation, as well as providing hardware prototyping
results for NoC mesh architecture.

The power dissipated increases too, as the buffer size increases. This can be
explained by the fact that the additional buffer space needs more chip area, which
increases the overall power (dynamic and through leakage) produced. As the buffer
size increases, the maximum frequency at which the design can function decreases.
That happens because a design with many slices requires more interconnects, which
results in delays and need for a slower clock. Future plans include evaluating the SYS-
MANTIC framework with more topologies and prototyping 3-D NoC architectures
using state-of-the-art Xilinx Virtex-7 HT devices which feature 3-D stacking.
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Chapter 11
Projects on Network-on-Chip

11.1 Develop a NoC Architecture in SystemC

Throughout this project, we aim to develop a regular NoC topology in System C.
More specifically:

• Develop a router in SystemC. This router should be parametric in order for it’s
architectural parameters to be easily extended. Initiate the derived solution by
setting one local port per router and each router to be connected with up to four
neighbor routers (2-D mesh topology). The packet routing in this NoC has to be
based on XY algorithm. Simulate both the router, as well as the NoC in order to
verify proper functionality.

• Extend the router of previous step in order to be 3-D aware. For this purpose, both
the architectural, as well as the routing algorithm should be enhanced. Could you
derive a solution that minimizes delay more than the XYZ algorithm? Evaluate
the derived results.

• Simulate both the 2-D and 3-D routers in order to verify their proper functionality.
• Finally, develop a 3×3, as well as a 3×3×2 (3-D with two layers) NoC architecture

consisted of routers developed in former steps.

Additional practice: Apply the concept of virtual layers and virtual networks dis-
cussed in Chap. 9 for evaluating the performance and power metrics of the 3-D NoC.

11.2 Fairness in a Packet Router with VCs

For this project, first download SystemC (http://www.systemc.org) and extend the
SystemC Helix multicast 2x2 router in the examples directory (developed by Syn-
opsys) to a 5×5 unicast router with virtual channels [1]. More specifically, add a
2-bit flag to the packet structure (called VC_ID) to select one of four different virtual
channels which form distinct physical paths through the switch but share the links;
distinct paths are supported by four sets of independent input and output buffers.

K. Tatas et al., Designing 2D and 3D Network-on-Chip Architectures, 259
DOI: 10.1007/978-1-4614-4274-5_11, © Springer Science+Business Media New York 2014

http://dx.doi.org/10.1007/978-1-4614-4274-5-9
http://www.systemc.org
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Within the extended 5×5 switch, both VC allocation and link arbitration (port
scheduling) must be tackled [1]. Moreover, in respect to a particular VC alloca-
tion, network fairness refers to whether requests from different VCs and/or different
incoming ports are receiving a fair share of system resources. Focusing on mathemat-
ical and conceptual definitions of different fairness metrics (see bibliography [2–5])
and additional papers from ATM networking domain (provided later if necessary),
propose and evaluate the performance and fairness of one or more combinations
of (VC allocation, link arbitration) algorithms able to drive packets from different
incoming VCs/ports to different outgoing VCs/ports, ideally in an equally balanced
way.

In order to evaluate your routing algorithm, consider a random destination scenario
(with/without hot spots) and compute performance, as well as corresponding fairness
metrics. For your performance computations you must apply the following definitions
and CNF normalizations.

The performance of an on-chip network under dynamic load is usually assessed by
two quantitative parameters, the accepted bandwidth or throughput and the latency.

• Accepted bandwidth is defined as the sustained data delivery rate given some
offered bandwidth at the network input. Two important characteristics are the
saturation point and the sustained rate after saturation. Saturation is defined as the
minimum offered bandwidth where the accepted bandwidth is lower than the global
packet creation rate at the source nodes. It is worth noting that, before saturation,
offered and accepted bandwidth are the same. The behavior above saturation is
important (and complex to analyze mathematically) because the network and/or the
routing (VC allocation, link arbitration) algorithms can become unstable, leading
to sharp performance degradation. We usually expect the accepted bandwidth to
remain stable after saturation, both in the presence of bursty applications that
require peak performance for a short period of time and applications that operate
after saturation in normal conditions, e.g., when executing a global permutation
pattern.

• Network latency is the average delay spent by a packet in the network, from the
insertion of the header flit in the injection lane till the reception of the tail flit at the
destination. It does not include the source queuing delay. The end-to-end latency
rises to infinity above saturation and is impossible to gain any information in this
case. For this reason, the network latency is often preferred to analyze the network
performance near saturation.

The experimental results of your traffic patterns must be presented according to the
Chaos Normal Form (CNF) [2]. The CNF uses two graphs, one to display the accepted
bandwidth and the other to display the network latency. In both graphs, the x-axis
corresponds to the offered bandwidth normalized with the unidirectional maximum
bandwidth of the links connecting the processing nodes to the network switches. This
makes the analysis independent of the link bandwidth and the packet (or flit) size. In
a more general setting with interconnection networks that are bisection-bandwidth
limited (e.g., if you connect several routers together in a mesh), CNF throughput
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is normalized with the bisection bandwidth, the upper bound on the throughput for
uniform traffic.

The following literature is helpful. The last paper refers to VC scheduling for
deadlock avoidance and several similar papers/patents exist that relate to improved
performance or QoS [1–6].
Additional practice: extend your SystemC version to RTL and co-simulate these
two versions, e.g., using ModelSim.

11.3 SoC Simulation Using GEM5

• Install GEM5 (http://www.m5sim.org) and build build/ARM/gem5.opt (ARM
architecture) in gem5 simulator.

• Run gem5.opt, using the simulation script configs/example/ruby_network_test.py,
4 CPUS, 4 DIRS (memories) and Point-to-Point topology (–topology=Pt2Pt).

– Enable tracing using flags –trace-start=0 –trace-file=output.txt
– Enable the following debug flags: RubyPort, RubySequencer, NetworkTest, RubyNet-

work, RubyTest and RubyGenerated.

• Check the tracefile of the simulation in file m5out/output.txt. Extract informa-
tion about the Message (NetworkMessage) as printed by the PerfectSwitch class.
Describe the various fields that are printed.

• Create a new chordal topology (named xnet) based on the Pt2Pt topology described
in configs/topologies/Pt2Pt.py. In this xnet topology, each node n is connected a)
to the previous node (n + max_nodes − 1) %max_nodes, b) to the next node
(n+1) %max_nodes and c) to the node across (n+ max_nodes

2 ) %max_nodes. For
example in an 8-node xnet, n=0, 1, . . ., 7 network node 0 is connected respectively
to nodes 7, 1, and 4. All other links from Pt2Pt network topology should be
eliminated. (In Pt2Pt topology each node is directly connected to all other nodes
of the network).

• Which python file should be modified in order to change the number of Virtual
Networks (VNETs) used in your Network?

– What is the minimum number of VNETs you can use? Why it cannot be reduced
beyond that number?

– What types of VNETs are used? Hint: Check method MessageBuffer* get-
ToNetQueue(NodeID id, bool ordered, int network_num, std::string vnet_type)
which is defined in src/mem/ruby/network/simple/SimpleNetwork.hh in order to
get more information.

http://www.m5sim.org
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11.4 NoC Simulation Using OMNeT++

• Install OMNeT++ [7] and compile the hypercube example found in folder
samples.

• In this example, the hypercube router implemented in file HCRouter.cc uses deflec-
tion routing. This means that there is no buffer in the router module: if more than
one packet needs to be sent out through the same gate, then one is deflected: it is
sent out through another gate.

• Change this implementation in order to add buffers before the output ports in order
to avoid packet deflection.

• Examine the use of routing tables in order to make the hypercube routing algorithm
adaptive.

11.5 Mapping Communication to NoC Topology

Many available commercial and freely available software packages perform parti-
tioning and mapping [13]. Common non-commercial packages include Chaco [8],
Jostle [9], Metis [10], and Scotch [11], with the latter two considered faster. They all
require a “dual graph” format used for representation of the application graph and
architecture graphs.

Download and apply some of these packages in mapping communication graphs
to architecture models. Concentrate on mapping common communication patterns
(e.g., mesh, butterfly, trees, finite element graphs) onto different NoC topologies
(e.g. mesh, torus, chordal rings, and fat trees). Measure both the execution time for
different number of edges/vertices in the source and target graphs and quality of your
embedding results by examining the following metrics.

• Edge dilation of an edge of GT is defined as the length of the path in GS onto
which an edge of GT is mapped. The dilation of the embedding is defined as
the maximum edge dilation of GT. Similarly, we define average and minimum
dilation metrics. These metrics measure latency overhead during point-to-point
communication in the target graph GT.

• Edge expansion refers to a weighted-edge graph GS. At first, it multiplies each edge
dilation with its corresponding edge weight. The edge expansion of the embedding
is defined as the maximum edge expansion of GT. Similarly, we define average
and minimum edge expansion metrics.

• Edge congestion represents the maximum number of paths containing any edge
in GT where every path represents an edge in GS. This metric measures edge
contention in global intensive communication.

• Node congestion is the maximum number of paths that contain any node in GT
where every path represents an edge in GS. This metric is a measure of node
contention during global intensive communication.

• Node expansion of the embedding (called load factor or compression ratio) is the
ratio of the number of nodes in GT to the number of nodes in GS. Similarly, max-
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imum node expansion represents the maximum number of nodes of GS assigned
to any node of GT.

• Number of cut edges, incident to vertices of different partitions; this metric is used
for comparing target graphs with the same number of edges, the smaller the metric
the better.

Additional practice: Consider the use of TGFF [12] to automatically generate sam-
ples of communication graphs with different types of properties. The following lit-
erature is helpful [8–13].

11.6 Multicore Processing Using FPGA

Prerequisite You are expected to have a basic experience of using major EDA devel-
opment tools (e.g., by Xilinx, Altera, Cadence, Mentor, etc.) to design hardware
modules in RTL using a hardware description language (HDL), or simple embedded
reconfigurable systems. This project will not be providing details on how to build
the basic system. A development board (Xilinx’s ML403, ML505, or any lower cost
Spartan-based board) is recommended for a complete lab experience of the project.

Description The purpose of this project is to investigate a complete hardware and
software processor system design using the Xilinx EDK/SDK tools. In this project,
you will use the BSB of the XPS system to automatically create a processor system
and then add a second processor to that processor system connected to the PLB bus
and directly to the first processor.

Create an XPS Project by using Base System Builder (BSB). In the next dialog
boxes that you choose, I would like to create a new design to select the available
board of your choice. The MicroBlaze processor can be connected to many different
cores which are system memory-mapped. Some of these will be useful when you are
implementing your own project.

From the System Assembly View, you can see that a MicroBlaze-based system
with the specified peripherals has been generated, and all the connections between
components are created accordingly. The local memory bus (LMB) is used by the
MicroBlaze core to control the dlmb_cntlr and ilmb_cntlr units. The microblaze_0
is the master processor while the controlled components are the slaves.

Under Implement Flow, Generate Netlist implements the design using the Xilinx
backend, going through synthesis and place and route to create the final netlist.
Generate BitStream generates the actual bitstream using bitgen. Export Design is
used to create a hardware platform description, which can be used for software
development.

Fast Simplex Link (FSL) provides a point to point communication between any
two components on the FPGA. Add a second MicroBlaze processor connected on
the PLB bus and, two LMB controllers with an additional BRAM from the IP catalog
tab. As the FSL is unidirectional FIFO-based point-to-point communication bus, add
two FSL links between them. Each should support transfer of eight 32-bit words.
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At the ports tab carefully connect the system clock and reset to the new-added cores.
At the Addresses tab allocate at least 16 KB of instruction and data memory to the
new processor.

After generating the bitstream export the design to the Software Development Kit
(SDK) and launch Xilinx SDK.

1. Initially test the system with the processor_0 to send a series of numbers to
processor_1. This second processor should print them (using the putnum(), or
the xil_printf() function) through the UART to the terminal of your host system
connected to the prototype platform.

2. Use a publicly available algorithm (e.g., [14, 15]) to perform data compression
on the data that arrive to processor_1. Thus, processor_0 can operate as a job
scheduler processor assigning data to co-processors.

3. Through a shared memory, either the off-chip SRAM or DDR, perform the same
scenario with Step 2, only that now processor_0 can send a pointer to the data
chunk that reside at the shared memory.

11.6.1 Background Overview

Xilinx Inc. MicroBlaze is a FPGA-based soft microprocessor IP core. It uses the
Harvard RISC architecture and the structure of the 32-bit instruction and data bus,
there are 32 general-purpose 32-bit width register; in the 150 MHz clock frequency,
up to 125 DMIPS of processing performance. Xilinx offers the use of the EDK
(Embedded System Development Kit), so that the provided library IP cores can be
parameterized by the graphical interface to facilitate completion of the embedded
soft-processor system design. MicroBlaze can be heavily customized to the needs of
the target application by configuring its properties such as instruction and data cache
sizes, use of a memory management unit, use of a floating point unit, etc.

MicroBlaze soft processor core provides rich interfaces.

• Processor Local Bus (PLB) interface, a traditional system memory-mapped trans-
action bus with master/slave capability.

• AXI interface as of 6-, 7-series devices.
• High-speed Local Memory Bus (LMB) interface.
• FSL master and slave device interface.
• Xilinx Cache Link (XCL) interface.
• With MDM (Microprocessor Debug Module) interface to connect the debugger.

MicroBlaze soft-core’s FSL is a unique one-way communication method based
on the FIFO links and can be user-defined; XCL is for the realization of the memory
chip high-speed access. There is also a dedicated debug interface. Through parameter
setting, developers can use only the required application-specific processor features.
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